

Victorian Certificate of Education 2012

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

Letter

STUDENT NUMBER

Figures Words

SPECIAI	JST N	IATH	EMAT	ICS

Written examination 1

Friday 9 November 2012

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of bookNumber of
questionsNumber of questions
to be answeredNumber of
marks101040

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 9 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

Instructions

Answer **all** questions in the spaces provided.

Unless otherwise specified an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Take the **acceleration due to gravity** to have magnitude $g \text{ m/s}^2$, where g = 9.8.

Question 1

Find an antiderivative of $\frac{6+x}{x^2+4}$.

2 marks

Question 2

Find all real solutions of the equation $2\cos(x) = \sqrt{3}\cot(x)$.

Consider the equation $z^3 - z^2 - 2z - 12 = 0, z \in C$. **a.** Given that $z = 2\operatorname{cis}\left(\frac{2\pi}{3}\right)$ is a root of the equation, find the other two roots in the form a + ib, where $a, b \in R$.

b. Plot all of the roots clearly on the Argand diagram below.

1 mark

A crate of mass 50 kg sits on a rough floor. A tension force of T newtons is applied to the crate at 30° to the horizontal. The coefficient of friction is 0.2.

a. On the diagram below, show all forces acting on the crate and label them.

2 marks

1 mark

b. Write down the maximum value of *T* that can be applied without the crate leaving the floor.

c. Find the value of *T* required for the crate to be on the point of moving. Give your answer in the form $\frac{ag}{1+b\sqrt{c}}$, where *a*, *b* and *c* are integers, and *g* is the acceleration due to gravity.

3 marks

Let $y = \arctan(2x)$. Find the value of *a* given that $\frac{d^2y}{dx^2} = ax\left(\frac{dy}{dx}\right)^2$, where *a* is a real constant.

3 marks

Question 6

Find the gradient of the tangent to the curve $xy^2 + y + (\log_e(x-2))^2 = 14$ at the point (3, 2).

Consider the curve with equation $y = (x - 1)\sqrt{2 - x}$, $1 \le x \le 2$. Calculate the area of the region enclosed by the curve and the *x*-axis.

3 marks

Question 8

The velocity, v m/s, of a body when it is x metres from a fixed point O is given by

$$v = \frac{2x}{\sqrt{1+x^2}}.$$

Find an expression for the acceleration of the body in terms of x in simplest form.

3 marks

TURN OVER

The position of a particle at time *t* is given by

$$\mathbf{r}(t) = \left(2\sqrt{t^2 + 2} - t^2\right)\mathbf{i} + \left(2\sqrt{t^2 + 2} + 2t\right)\mathbf{j}, t \ge 0.$$

a. Find the velocity of the particle at time *t*.

b. Find the speed of the particle at time t = 1 in the form $\frac{a\sqrt{b}}{c}$, where *a*, *b* and *c* are positive integers.

c. Show that at time t = 1, $\frac{dy}{dx} = \frac{1 + \sqrt{3}}{1 - \sqrt{3}}$.

2 marks

1 mark

2 marks

d. Find the angle in terms of π , between the vector $-\sqrt{3} \mathbf{i} + \mathbf{j}$ and the vector $\mathbf{r}(t)$ at time t = 0.

1 + 1 + 1 = 3 marks

Question 10

Consider the functions with rules $f(x) = \arcsin\left(\frac{x}{2}\right) + \frac{3}{\sqrt{25x^2 - 1}}$ and $g(x) = \arcsin(3x) - \frac{3}{\sqrt{25x^2 - 1}}$.

a. i. Find the maximal domain of
$$f_1(x) = \arcsin\left(\frac{x}{2}\right)$$
.

ii. Find the maximal domain of
$$f_2(x) = \frac{3}{\sqrt{25x^2 - 1}}$$
.

- iii. Find the largest set of values of $x \in R$ for which f(x) is defined.
- **b.** Given that h(x) = f(x) + g(x) and that $\theta = h\left(\frac{1}{4}\right)$, evaluate $\sin(\theta)$. Give your answer in the form $\frac{a\sqrt{b}}{c}$, $a, b, c \in Z$.

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2012

Specialist Mathematics Formulas

Mensuration

area of a trapezium:	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder:	$2\pi rh$
volume of a cylinder:	$\pi r^2 h$
volume of a cone:	$\frac{1}{3}\pi r^2h$
volume of a pyramid:	$\frac{1}{3}Ah$
volume of a sphere:	$\frac{4}{3}\pi r^3$
area of a triangle:	$\frac{1}{2}bc\sin A$
sine rule:	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
cosine rule:	$c^2 = a^2 + b^2 - 2ab \cos C$

Coordinate geometry

ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ hyperbola: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$

Circular (trigonometric) functions

$$\cos^{2}(x) + \sin^{2}(x) = 1$$

$$1 + \tan^{2}(x) = \sec^{2}(x)$$

$$\sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)$$

$$\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y)$$

$$\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\cos(2x) = \cos^{2}(x) - \sin^{2}(x) = 2\cos^{2}(x) - 1 = 1 - 2\sin^{2}(x)$$

$$\sin(2x) = 2\,\sin(x)\,\cos(x)$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

 $\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$

 $\cot^2(x) + 1 = \csc^2(x)$

 $\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$

 $\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$

function	sin ⁻¹	\cos^{-1}	tan ⁻¹
domain	[-1, 1]	[-1, 1]	R
range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[0, <i>π</i>]	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$$z = x + yi = r(\cos \theta + i \sin \theta) = r \operatorname{cis} \theta$$

$$|z| = \sqrt{x^2 + y^2} = r \qquad -\pi < \operatorname{Arg} z \le \pi$$

$$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2) \qquad \frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$$

$$z^n = r^n \operatorname{cis}(n\theta) \text{ (de Moivre's theorem)}$$

Calculus

$$\begin{aligned} \frac{d}{dx}(x^n) &= nx^{n-1} & \int x^n dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1 \\ \frac{d}{dx}(e^{ax}) &= ae^{ax} & \int e^{ax} dx = \frac{1}{a}e^{ax} + c \\ \frac{d}{dx}(\log_e(x)) &= \frac{1}{x} & \int \frac{1}{x}dx = \log_e|x| + c \\ \frac{d}{dx}(\sin(ax)) &= a\cos(ax) & \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c \\ \frac{d}{dx}(\cos(ax)) &= -a\sin(ax) & \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c \\ \frac{d}{dx}(\tan(ax)) &= a\sec^2(ax) & \int \sec^2(ax) dx = \frac{1}{a}\tan(ax) + c \\ \frac{d}{dx}(\sin^{-1}(x)) &= \frac{1}{\sqrt{1-x^2}} & \int \frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{-1}\left(\frac{x}{a}\right) + c, a > 0 \\ \frac{d}{dx}(\cos^{-1}(x)) &= \frac{-1}{\sqrt{1-x^2}} & \int \frac{-1}{\sqrt{a^2 - x^2}}dx = \cos^{-1}\left(\frac{x}{a}\right) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} & \int \frac{a^2 + x^2}{a^2}dx = \tan^{-1}\left(\frac{x}{a}\right) + c \end{aligned}$$

product rule:

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$
quotient rule:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
chain rule:

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
Euler's method:
If $\frac{dy}{dx} = f(x)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$
acceleration:

$$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
constant (uniform) acceleration:
 $v = u + at$ $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u+v)t$

TURN OVER

Vectors in two and three dimensions

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

$$|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\mathbf{r}_1 \cdot \mathbf{r}_2 = r_1 r_2 \cos \theta = x_1 x_2 + y_1 y_2 + z_1 z_2$$

$$\dot{\mathbf{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt} \mathbf{i} + \frac{dy}{dt} \mathbf{j} + \frac{dz}{dt} \mathbf{k}$$

Mechanics

momentum:	$\underbrace{\mathbf{p}}_{\sim} = m \underbrace{\mathbf{v}}_{\sim}$
equation of motion:	$\underset{\sim}{\mathbf{R}} = m\underset{\sim}{\mathbf{a}}$
friction:	$F \leq \mu N$