VCE Specialist Mathematics # Written examination 1 – End of year ## Sample questions These sample questions are intended to demonstrate how new aspects of Units 3 and 4 of VCE Specialist Mathematics written examination 1 may be examined. They do **not** constitute a full examination paper. **Question 1** (4 marks) Consider the statement $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$, where $n \in \mathbb{N}$. | a. | Show that if $n = 1$, the statement is true. | 1 mark | |----|---|--------| | | | | **b.** Assume that the statement is true for n = k. Write down the assumption in terms of k. 1 mark C. Hence, prove by mathematical induction that $$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{2^n} = 1 - \frac{1}{2^n}$$, where $n \in \mathbb{N}$. 2 marks ### Question 2 (4 marks) | a. | Consider the inequality $2^n > n^2$ for $n \ge n_0$, where $n \in N$. | | |----|--|---------| | | Show that $n_0 = 5$. | 1 mark | | | | | | | | | | b. | Prove by mathematical induction that $2^n > n^2$ for $n \ge 5$, where $n \in N$. | 3 marks | Question 3 (4 marks) | |--| | Prove by mathematical induction that the number $9^n - 5^n$ is divisible by 4 for all $n \in \mathbb{N}$. | Question 4 (3 marks) | | Use proof by contradiction to prove that if n is odd, where $n \in \mathbb{N}$, then $n^3 + 1$ is even. | Question 5 (3 marks) | |--| | Use proof by contradiction to prove that $\sqrt{3} + \sqrt{5} > \sqrt{11}$. | | | | | | | | | | | | | | | | | | Question 6 (4 marks) | | The curve given by $y = \sqrt{4 - x^2}$, where $x \in [-1, 1]$, is rotated about the x-axis to form a solid of revolution. | | Find the surface area of this solid of revolution. | | | | | | | | | | | | | | | SM EXAM 1 (SAMPLE) | Question 7 (5 marks) | |---| | The curve given by $y = \sqrt[3]{x}$ is rotated about the y-axis to form a solid of revolution. | | Find the surface area of the part of this solid of revolution where $x \in [0, 8]$. | | | | | | | | | | | | | | | | | | | # Question 8 (4 marks) Determine the surface area obtained by rotating the curve defined by the parametric equations $x = \sin^3(\theta), y = \cos^3(\theta)$, where $\theta \in \left[0, \frac{\pi}{2}\right]$, about the *y*-axis. | Λ., | action | 0 (| | 11 | |-----|--------|------|-------|-----| | Qu | estion | 9 (: | s mar | KS) | | | $\frac{4}{3}\sqrt{(t+1)^3}$, $y = \frac{1}{2}t^2$, where $0 \le t \le 1$, is rotated about the x-axis. | | |-----|---|---------| Que | estion 10 (7 marks) | | | The | population of bacteria, $P(t)$, in a Petri dish satisfies the logistic differential equation | | | | $\frac{dP}{dt} = 2P\bigg(6 - \frac{P}{8000}\bigg)$ | | | whe | re t is measured in hours and the initial population is 4000 bacteria. | | | a. | Find the maximum number of bacteria predicted by this model. | 1 mark | | | | | | | | | | | | | | b. | Find the number of bacteria when the population is growing at its fastest rate. | 2 marks | | | | | | | | | | | | | | | | | | c. | Solve the differential equation to find P as a function of t . | 4 marks | |----|--|---------| Ou | estion 11 (4 marks) | | | | $d \int x^2 \cos(2x) dx.$ | e vectors $\underline{a} = 2\underline{i} - 3\underline{j} + \underline{k}$ and $\underline{b} = 4\underline{i} + 2\underline{j} - 3\underline{k}$ lie in a plane that passes through the point $(3, 2, 1)$. | | |-----------|---|---------| | Fine | d the Cartesian equation of this plane. | | | | | _ | | | | | | | | - | | | | - | | | | | | | | - | | | | - | | | | | | | | - | | | | | | _ | 4.40 (6.41) | | | | estion 13 (6 marks) Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | | | Que
a. | estion 13 (6 marks) Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and $R(5, 2, 0)$. | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | | Find the equation of the plane that passes through the points $P(3, 3, 6)$, $Q(1, -1, 2)$ and | 4 marks | | b. | Find the point of intersection of the line given by $\underline{r} = 2\underline{i} + 5\underline{k} + t(2\underline{i} - 4\underline{j} - 3\underline{k})$, where $t \in R$, with the plane given by $2x - 2y + z = 6$. | 2 marks | |--|---|---------| | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | Find the angle between the plane given by $2x + y + z = 7$ and the line given by | | | | with the plane given by $2x - 2y + z = 6$. Question 14 (3 marks) Find the angle between the plane given by $2x + y + z = 7$ and the line given by $\underline{r} = 11\underline{i} + 4\underline{j} + 3\underline{k} + t(\underline{i} + 2\underline{j} - \underline{k})$, where $t \in R$. | | | | | | | | | | _ | | | | _ | | | | _ | | | | | | | | _ | | | | _ | | Find the vector equation of the line through the points $A(3, 1, -1)$ and $B(5, 2, -6)$. | 2 mark | |--|--------| Find the sine of the angle that this line makes with the plane given by $x + 2y - z = 9$. | 3 mar | Question | 16 | (4 | marks' |) | |----------|----|----|--------|---| | | | | | | | The position of a particle after t seconds is given by $\underline{\mathbf{r}}(t) = t^2 \underline{\mathbf{i}} + 5t \underline{\mathbf{j}} + (t^2 - 16t)\underline{\mathbf{k}}$, where $t \ge 0$ and components are measured in metres. | |--| | Find the time at which the minimum speed occurs and calculate the minimum speed. Give your answer in $m\ s^{-1}$. | Question 17 (3 marks) | | Two planes have equations $x + y - z = 3$ and $2x - y - 2z = 4$. | | Given that the angle between the two planes is θ , find $sec(\theta)$. | | | | | | | | Question 18 (3 marks) The position vectors $\mathbf{a} = 2\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ form two sides of a triangle. | | |---|--| | Find the area of the triangle in the form $c\sqrt{d}$, where $c, d \in N$. | Question 19 (4 marks) A parallelogram, $OABC$, has vertices at $O(0, 0, 0)$, $A(1, 2, -1)$ and $C(3, m, 1)$, where $m \in R$. Find the value(s) of m if the area of the parallelogram is $4\sqrt{5}$. |