

Victorian Certificate of Education 2015

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

STUDENT NUMBER

Letter

FURTHER MATHEMATICS

Written examination 2

Monday 2 November 2015

ndicated. Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.45 am (1 hour 30 minutes)

QUESTION AND ANSWER BOOK

Structure of book		
Core	Strong	
Number of questions	Number of questions to be answered	Number of marks
	5	15
Module		
Number of modules	Number of modules to be answered	Number of marks
6	3	45
		Total 60

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, one bound reference, one approved graphics calculator or approved CAS calculator or CAS software and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 43 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time. ٠
- Write your **student number** in the space provided above on this page. •
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

This examination consists of a core and six modules. Students should answer **all** questions in the core and then select **three** modules and answer **all** questions within the modules selected.

You need not give numerical answers as decimals unless instructed to do so. Alternative forms may involve, for example, π , surds or fractions.

Diagrams are not to scale unless specified otherwise.

FURTHER MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Instructions

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2015

Further Mathematics formulas

Core: Data analysis

standardised score: $z = \frac{x - \overline{x}}{s_x}$ least squares regression line: $y = a + bx, \text{ where } b = r \frac{s_y}{s_x} \text{ and } a = \overline{y} - b\overline{x}$ residual value: residual value: seasonal index: $z = \frac{actual \text{ figure}}{deseasonal ised \text{ figure}}$

Module 1: Number patterns

arithmetic series:	$a + (a + d) + \dots + (a + (n - 1)d) = \frac{n}{2} [2a + (n - 1)d] = \frac{n}{2} (a + l)$
geometric series:	$a + ar + ar^{2} + \ldots + ar^{n-1} = \frac{a(1-r^{n})}{1-r}, r \neq 1$
infinite geometric series:	$a + ar + ar^2 + ar^3 + \dots = \frac{a}{1-r}, r < 1$

Module 2: Geometry and trigonometry

area of a triangle:	$\frac{1}{2}bc\sin A$
Heron's formula:	$A = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{1}{2}(a+b+c)$
circumference of a circle:	$2\pi r$
area of a circle:	πr^2
volume of a sphere:	$\frac{4}{3}\pi r^3$
surface area of a sphere:	$4\pi r^2$
volume of a cone:	$\frac{1}{3}\pi r^2h$
volume of a cylinder:	$\pi r^2 h$
volume of a prism:	area of base × height
volume of a pyramid:	$\frac{1}{3}$ area of base × height

Pythagoras' theorem:

sine rule:

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $c^2 = a^2 + b^2 - 2ab \cos C$

 $c^2 = a^2 + b^2$

cosine rule:

Module 3: Graphs and relations

Straight-line graphs

gradient (slope):	$m = \frac{y_2 - y_1}{x_2 - x_1}$
equation:	y = mx + c

Module 4: Business-related mathematics

simple interest:	$I = \frac{PrT}{100}$
compound interest:	$A = PR^n$, where $R = 1 + \frac{r}{100}$
hire-purchase:	effective rate of interest $\approx \frac{2n}{n+1} \times \text{flat rate}$

Module 5: Networks and decision mathematics

Euler's formula:

v + f = e + 2

Module 6: Matrices

determinant of a 2 × 2 matrix: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}; \quad \det A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ inverse of a 2 × 2 matrix: $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ where $\det A \neq 0$