Victorian Certificate of Education

2015

\square

STUDENT NUMBER

\square
\square
\square
\qquad

FURTHER MATHEMATICS
 Written examination 2

Monday 2 November 2015

Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to $\mathbf{1 0 . 4 5}$ am (1 hour 30 minutes)

QUESTION AND ANSWER BOOK

Structure of book

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, one bound reference, one approved graphics calculator or approved CAS calculator or CAS software and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 43 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

This examination consists of a core and six modules. Students should answer all questions in the core and then select three modules and answer all questions within the modules selected.
You need not give numerical answers as decimals unless instructed to do so. Alternative forms may involve, for example, π, surds or fractions.
Diagrams are not to scale unless specified otherwise.

FURTHER MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Instructions

Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Further Mathematics formulas

Core: Data analysis

standardised score:
$z=\frac{x-\bar{x}}{s_{x}}$
least squares regression line:
$y=a+b x, \quad$ where $b=r \frac{s_{y}}{s_{x}} \quad$ and $\quad a=\bar{y}-b \bar{x}$
residual value:
residual value $=$ actual value - predicted value
seasonal index:
seasonal index $=\frac{\text { actual figure }}{\text { deseasonalised figure }}$

Module 1: Number patterns

arithmetic series:
$a+(a+d)+\ldots+(a+(n-1) d)=\frac{n}{2}[2 a+(n-1) d]=\frac{n}{2}(a+l)$
geometric series:
$a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{1-r}, r \neq 1$
infinite geometric series:
$a+a r+a r^{2}+a r^{3}+\ldots=\frac{a}{1-r},|r|<1$

Module 2: Geometry and trigonometry

area of a triangle:
$\frac{1}{2} b c \sin A$

Heron's formula:
circumference of a circle:
area of a circle:
volume of a sphere:
surface area of a sphere:
volume of a cone:
volume of a cylinder:
volume of a prism:
volume of a pyramid:
$\frac{1}{3} \pi r^{2} h$
$A=\sqrt{s(s-a)(s-b)(s-c)}$, where $s=\frac{1}{2}(a+b+c)$
$2 \pi r$
πr^{2}
$\frac{4}{3} \pi r^{3}$
$4 \pi r^{2}$
$\pi r^{2} h$
area of base \times height
$\frac{1}{3}$ area of base \times height

Pythagoras' theorem:

$$
c^{2}=a^{2}+b^{2}
$$

sine rule:

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

cosine rule:

Module 3: Graphs and relations
Straight-line graphs
gradient (slope):

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

equation:
$y=m x+c$

Module 4: Business-related mathematics

simple interest:
$I=\frac{\operatorname{Pr} T}{100}$
compound interest:
$A=P R^{n}, \quad$ where $R=1+\frac{r}{100}$
hire-purchase:
effective rate of interest $\approx \frac{2 n}{n+1} \times$ flat rate

Module 5: Networks and decision mathematics

Euler's formula:

$$
v+f=e+2
$$

Module 6: Matrices

determinant of a 2×2 matrix: $\quad A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] ; \quad \operatorname{det} A=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$
inverse of a 2×2 matrix: $A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right] \quad$ where $\operatorname{det} A \neq 0$

