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Question 1 (4	marks)

a.	 Let	f	:	(–2,	∞)	→	R,	f	(x)	=	 x
x + 2

.

	 Differentiate	f	with	respect	to	x.	 2	marks

b.	 Let	g(x)	=	(2	–	x3)3.

	 Evaluate	g′ (1).	 2	marks

Instructions
Answer	all	questions	in	the	spaces	provided.
In	all	questions	where	a	numerical	answer	is	required,	an	exact	value	must	be	given,	unless	otherwise	
specified.
In	questions	where	more	than	one	mark	is	available,	appropriate	working	must	be	shown.
Unless	otherwise	indicated,	the	diagrams	in	this	book	are	not	drawn	to	scale.
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Question 2 (4 marks)
Let y = x loge(3x).

a. Find dy
dx

. 2 marks

b. Hence, calculate (log ( ) ) .e x dx
1

2
3 1∫ +  Express your answer in the form loge(a), where a is a 

positive integer. 2 marks
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Question 3 (4	marks)
Let	f	:	[–3,	0]	→	R,	f (x)	=	(x	+	2)2(x	–	1).

a.	 Show	that	(x	+	2)2(x	–	1)	=	x3	+	3x2	–	4. 1	mark

b.	 Sketch	the	graph	of	f	on	the	axes	below.	Label	the	axis	intercepts	and	any	stationary	points	
with	their	coordinates. 3	marks

6
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Question 4 (2	marks)
In	a	large	population	of	fish,	the	proportion	of	angel	fish	is 

1
4
.

Let	P̂ 	be	the	random	variable	that	represents	the	sample	proportion	of	angel	fish	for	samples	of	size	n	drawn	
from	the	population.

Find	the	smallest	integer	value	of	n	such	that	the	standard	deviation	of	P̂ 	is	less	than	or	equal	to	
1

100
.
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Question 5 (4	marks)
For	Jac	to	log	on	to	a	computer	successfully,	Jac	must	type	the	correct	password.	Unfortunately,	Jac	
has	forgotten	the	password.	If	Jac	types	the	wrong	password,	Jac	can	make	another	attempt.	The	
probability	of	success	on	any	attempt	is	2

5
.	Assume	that	the	result	of	each	attempt	is	independent	

of	the	result	of	any	other	attempt.	A	maximum	of	three	attempts	can	be	made.

a.	 What	is	the	probability	that	Jac	does	not	log	on	to	the	computer	successfully? 1	mark

b.	 Calculate	the	probability	that	Jac	logs	on	to	the	computer	successfully.	Express	your	answer	in	
the	form	a

b
,	where	a	and	b	are	positive	integers. 1	mark

c.	 Calculate	the	probability	that	Jac	logs	on	to	the	computer	successfully	on	the	second	or	on	the	
third	attempt.	Express	your	answer	in	the	form	 c

d
,	where	c	and	d	are	positive	integers. 2	marks
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Question 6 (3	marks)

Let	 tan( ) sin( ) cos( ) sin( ) cos( ) .θ θ θ θ θ− −( ) +( ) =1 3 3 0( )
a.	 State	all	possible	values	of	tan(θ ). 1	mark

b.	 Hence,	find	all	possible	solutions	for	 tan( ) sin ( ) cos ( ) ,θ θ θ− −( ) =1 3 02 2( ) 	where	0	≤	θ	≤	π. 2	marks
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Question 7 (5	marks)

Let	 f R f x x: [ , ) , ( ) .0 1∞ → = +

a.	 State	the	range	of	f. 1	mark	

b.	 Let	g	:	(–	∞,	c]	→	R,	g(x)	=	x2	+	4x	+	3,	where	c	<	0.

 i.	 Find	the	largest	possible	value	of	c	such	that	the	range	of	g	is	a	subset	of	the	domain	of	f. 2	marks

	 ii.	 For	the	value	of	c	found	in	part b.i.,	state	the	range	of	f	(g(x)). 1	mark	

c.	 Let	h	:	R	→	R,	h(x)	=	x2	+	3.

	 State	the	range	of f	(h(x)). 1	mark
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Question 8 (5	marks)

For	events	A	and	B	from	a	sample	space,	Pr and PrA B B A| | .( ) = ( ) =1
5

1
4
	Let	 Pr ( ) .A B p∩ =

a.	 Find	Pr(A)	in	terms	of	p. 1	mark

b.	 Find	Pr ( )′∩ ′A B 	in	terms	of	p. 2	marks

c.	 Given	that	Pr ( ) ,A B∪ ≤
1
5
	state	the	largest	possible	interval	for	p. 2	marks
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Question 9 (9	marks)
The	graph	of	 f R f x xx: , , ( )(0  1 1[ ]→ = – 	is	shown	below.

y x= )1 – x

y

x
0 1

a.	 Calculate	the	area	between	the	graph	of	f	and	the	x-axis. 2	marks

b.	 For	x	in	the	interval	(0,	1),	show	that	the	gradient	of	the	tangent	to	the	graph	of	f	is	1 3
2
− x

x
. 1	mark
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END OF QUESTION AND ANSWER BOOK

The	edges	of	the	right-angled triangle	ABC	are	the	line	segments	AC	and	BC,	which	are	tangent	to	
the	graph	of	f,	and	the	line	segment	AB,	which	is	part	of	the	horizontal	axis,	as	shown	below.
Let	θ	be	the	angle	that	AC	makes	with	the	positive	direction	of	the	horizontal	axis,	where		
45°	≤	θ	<	90°.

y x= )1 – x

y

x
0A B

C

θ

c.	 Find	the	equation	of	the	line	through	B	and	C	in	the	form	y	=	mx	+	c,	for	θ	=	45°. 2	marks

d.	 Find	the	coordinates	of	C	when	θ	=	45°. 4	marks
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Instructions

This formula sheet is provided for your reference.
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Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic 
devices into the examination room.
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Mathematical Methods formulas

Mensuration

area of a trapezium 1
2
a b h+( ) volume of a pyramid 1

3
Ah

curved surface area  
of a cylinder 2π  rh volume of a sphere

4
3

3π r

volume of a cylinder π r 2h area of a triangle
1
2
bc Asin ( )

volume of a cone
1
3

2π r h

Calculus

d
dx

x nxn n( ) = −1 x dx
n

x c nn n=
+

+ ≠ −+∫ 1
1

11 ,

d
dx

ax b an ax bn n( )+( ) = +( ) −1 ( )
( )

( ) ,ax b dx
a n

ax b c nn n+ =
+

+ + ≠ −+∫ 1
1

11

d
dx
e aeax ax( ) = e dx a e cax ax= +∫ 1

d
dx

x xelog ( )( ) = 1
1 0x dx x c xe= + >∫ log ( ) ,

d
dx

ax a axsin ( ) cos( )( ) =  sin ( ) cos( )ax dx a ax c= − +∫ 1

d
dx

ax a axcos( )( ) −=  sin ( ) cos( ) sin ( )ax dx a ax c= +∫ 1

d
dx

ax a
ax

a axtan ( )
( )

( ) ==
cos

 sec ( )2
2

product rule
d
dx
uv u dv

dx
v du
dx

( ) = + quotient rule
d
dx

u
v

v du
dx

u dv
dx

v






 =

−

2

chain rule
dy
dx

dy
du
du
dx

=
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Probability

Pr(A) = 1 – Pr(A′) Pr(A ∪ B) = Pr(A) + Pr(B) – Pr(A ∩ B)

Pr(A|B) = 
Pr

Pr
A B
B
∩( )
( )

mean µ = E(X) variance var(X) = σ 2 = E((X – µ)2) = E(X 2) – µ2

Probability distribution Mean Variance

discrete Pr(X = x) = p(x) µ = ∑ x p(x) σ 2 = ∑ (x – µ)2 p(x)

continuous Pr( ) ( )a X b f x dx
a

b
< < = ∫ µ =

−∞

∞

∫ x f x dx( ) σ µ2 2= −
−∞

∞

∫ ( ) ( )x f x dx

Sample proportions

P X
n

=̂ mean E(P̂ ) = p

standard 
deviation

sd P p p
n

(ˆ ) ( )
=

−1 approximate 
confidence 
interval

,p z
p p

n
p z

p p
n

−
−( )

+
−( )











1 1ˆ ˆ ˆˆˆ ˆ
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