MATHEMATICAL METHODS
 Written examination 1

Tuesday 6 June 2017
Reading time: 2.00 pm to 2.15 pm ($\mathbf{1 5}$ minutes)
Writing time: 2.15 pm to 3.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 13 pages.
- Formula sheet.
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (4 marks)
a. Let $y=e^{2 x} \cos \left(\frac{x}{2}\right)$.

Find $\frac{d y}{d x}$.
\qquad
\qquad
\qquad
\qquad
\qquad
b. Let $f:(0, \pi) \rightarrow R$, where $f(x)=\log _{e}(\sin (x))$.

Evaluate $f^{\prime}\left(\frac{\pi}{3}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 (5 marks)
a. Find an antiderivative of $\cos (1-x)$ with respect to x.
\qquad
\qquad
\qquad
b. Evaluate $\int_{1}^{2}\left(3 x^{2}+\frac{4}{x^{2}}\right) d x$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Find $f(x)$ given that $f(4)=25$ and $f^{\prime}(x)=\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1, x>0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (3 marks)
a. State the smallest positive value of k such that $x=\frac{3 \pi}{4}$ is a solution of $\tan (x)=\cos (k x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
b. Solve $2 \sin ^{2}(x)+3 \sin (x)-2=0$, where $0 \leq x \leq 2 \pi$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (5 marks)

Let $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow R$, where $f(x)=\tan (2 x)+1$.
a. Sketch the graph of f on the axes below. Label any asymptotes with the appropriate equation, and label the end points and the axis intercepts with their coordinates.

b. Use features of the graph in part a. to find the average value of f between $x=-\frac{\pi}{8}$ and $x=\frac{\pi}{8}$.

1 mark
\qquad
\qquad
\qquad

Question 5 (6 marks)

Records of the arrival times of trains at a busy station have been kept for a long period. The random variable X represents the number of minutes after the scheduled time that a train arrives at this station, that is, the lateness of the train. Assume that the lateness of one train arriving at this station is independent of the lateness of any other train.
The distribution of X is given in the table below.

x	-1	0	1	2
$\operatorname{Pr}(X=x)$	0.1	0.4	0.3	p

a. Find the value of p. 1 mark
\qquad
\qquad
b. Find $\mathrm{E}(X)$.
\qquad
\qquad
\qquad
c. Find $\operatorname{var}(X)$.
\qquad
\qquad
\qquad
\qquad
d. A passenger catches a train at this station on five separate occasions.

What is the probability that the train arrives before the scheduled time on exactly four of these occasions?
\qquad
\qquad
\qquad

Question 6 (3 marks)
At a large sporting arena there are a number of food outlets, including a cafe.
a. The cafe employs five men and four women. Four of these people are rostered at random to work each day. Let \hat{P} represent the sample proportion of men rostered to work on a particular day.
i. List the possible values that \hat{P} can take.
ii. Find $\operatorname{Pr}(\hat{P}=0)$.
\qquad
\qquad
\qquad
\qquad
b. There are over 80000 spectators at a sporting match at the arena. Five in nine of these spectators support the Goannas team. A simple random sample of 2000 spectators is selected.

What is the standard deviation of the distribution of \hat{P}, the sample proportion of spectators who support the Goannas team?
\qquad
\qquad
\qquad
\qquad

Question 7 (6 marks)
Let $f: R \rightarrow R$, where $f(x)=2 x^{3}+1$, and let $g: R \rightarrow R$, where $g(x)=4-2 x$.
a. i. Find $g(f(x))$.
ii. Find $f(g(x))$ and express it in the form $k-m(x-d)^{3}$, where m, k and d are integers.
\qquad
\qquad
\qquad
\qquad
\qquad
b. The transformation $T: R^{2} \rightarrow R^{2}$ with rule $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}b \\ c\end{array}\right]$, where a, b and c are integers, maps the graph of $y=g(f(x))$ onto the graph of $y=f(g(x))$.

Find the values of a, b and c.
3 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CONTINUES OVER PAGE

Question 8 (8 marks)

The rule for a function f is given by $f(x)=\sqrt{2 x+3}-1$, where f is defined on its maximal domain.
a. Find the domain and rule of the inverse function f^{-1}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Solve $f(x)=f^{-1}(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Let $g: D \rightarrow R, g(x)=\sqrt{2 x+c}-1$, where D is the maximal domain of g and c is a real number.
i. For what value(s) of c does $g(x)=g^{-1}(x)$ have no real solutions?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii. For what value(s) of c does $g(x)=g^{-1}(x)$ have exactly one real solution?
\qquad
\qquad
\qquad

Victorian Certificate of Education 2017

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$	volume of a pyramid	$\frac{1}{3} A h$
curved surface area of a cylinder	$2 \pi r h$	volume of a sphere	$\frac{4}{3} \pi r^{3}$
volume of a cylinder	$\pi r^{2} h$	area of a triangle	$\frac{1}{2} b c \sin (A)$
volume of a cone	$\frac{1}{3} \pi r^{2} h$		

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left((a x+b)^{n}\right)=a n(a x+b)^{n-1}$	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}(x)+c, x>0$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$	$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$	quotient rule
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$	$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$	
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$		
mean $\quad \mu=\mathrm{E}(X)$	variance	$\operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

Sample proportions

$\hat{P}=\frac{X}{n}$	mean	$\mathrm{E}(\hat{P})=p$	
standard deviation	$\operatorname{sd}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$	$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$	
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$		
mean $\quad \mu=\mathrm{E}(X)$	variance	$\operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

Sample proportions

$\hat{P}=\frac{X}{n}$	mean	$\mathrm{E}(\hat{P})=p$	
standard deviation	$\operatorname{sd}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

