Victorian Certificate of Education 2017

STUDENT NUMBER

\square

SPECIALIST MATHEMATICS
 Written examination 1

Thursday 8 June 2017
Reading time: 2.00 pm to 2.15 pm ($\mathbf{1 5}$ minutes) Writing time: 2.15 pm to 3.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
11	11	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 10 pages.
- Formula sheet.
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.
Unless otherwise specified, an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~ms}^{-2}$, where $g=9.8$

Question 1 (3 marks)
A 5 kg mass on a smooth plane inclined at 30° is held in equilibrium by a horizontal force of magnitude P newtons, as shown in the diagram below.

a. On the diagram above, show all other forces acting on the mass and label them.

1 mark
b. Find P. 2 marks
\qquad
\qquad
\qquad
\qquad

Question 2 (3 marks)

Find a given that $\int_{-2}^{a} \frac{8}{16-x^{2}} d x=\log _{e}(6), a \in(-2,4)$.
\qquad

Question 3 (3 marks)
Find the gradient of the curve with equation $x=\sin \left(\frac{y}{15}\right)$ when $x=\frac{1}{4}$. Give your answer in the form $a \sqrt{b}$, where $a, b \in Z^{+}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (4 marks)
Find the values of a and b given that $z-1-i$ is a factor of $z^{3}+(a+b) z^{2}+\left(b^{2}-a\right) z-4=0$, where a and b are real constants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 (4 marks)
Part of the graph of $y=\frac{\sqrt{x+1}}{\sqrt[4]{1-x^{2}}}$ is shown below.

Find the volume generated if the region bounded by the graph of $y=\frac{\sqrt{x+1}}{\sqrt[4]{1-x^{2}}}$, the lines $x=-\frac{1}{2}$ and $x=\frac{1}{2}$,
and the x-axis is rotated about the x-axis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 (3 marks)
Find all real solutions of $\tan (2 x)=-\tan (x)$.

Question 7 (5 marks)
Let $\frac{d y}{d x}=(4-y)^{2}$.
a. Express y in terms of x, where $y(0)=3$.

3 marks
\qquad
b. Express $\frac{d^{2} y}{d x^{2}}$ in terms of y.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 (3 marks)
A 3 kg mass has velocity $v \mathrm{~ms}^{-1}$, where $v=2 \arctan \sqrt{x}$ when it has a displacement x metres from the origin, $x>0$.

Find the net force, F newtons, acting on the mass in terms of x.

Question 9 (4 marks)
The random variables X and Y are independent with $\mu_{X}=4, \operatorname{var}(X)=36$ and $\mu_{Y}=3, \operatorname{var}(Y)=25$.
a. The random variable Z is such that $Z=2 X+3 Y$.
i. Find $\mathrm{E}(Z)$.
ii. Find the standard deviation of Z.
\qquad
\qquad
\qquad
b. Researchers have reason to believe that the mean of X has decreased. They collect a random sample of 64 observations of X and find that the sample mean is $\bar{X}=3.8$
i. State the null hypothesis and the alternative hypothesis that should be used to test that the mean has decreased.
\qquad
\qquad
ii. Calculate the mean and standard deviation for a distribution of sample means, \bar{X}, for samples of 64 observations.
\qquad
\qquad
\qquad

Question 10 (4 marks)

Consider the vectors $\underset{\sim}{\mathrm{a}}=-\underset{\sim}{\mathrm{i}}-2 \underset{\sim}{\mathrm{j}}+3 \underset{\sim}{\mathrm{k}}$ and $\underset{\sim}{\mathrm{b}}=2 \underset{\sim}{\mathrm{i}}+{\underset{\sim}{c}}_{\mathrm{j}}^{\mathrm{j}}+\underset{\sim}{\mathrm{k}}$.
Find the value of $c, c \in R$, if the angle between $\underset{\sim}{a}$ and $\underset{\sim}{\mathrm{b}}$ is $\frac{\pi}{3}$.
\qquad

Question 11 (4 marks)
Find the length of the curve specified parametrically by $x=a \theta-a \sin (\theta), y=a-a \cos (\theta)$ from $\theta=\frac{2 \pi}{3}$ to $\theta=2 \pi$, where $a \in R^{+}$. Give your answer in terms of a.

Victorian Certificate of Education 2017

SPECIALIST MATHEMATICS
 Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Specialist Mathematics formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$
curved surface area of a cylinder	$2 \pi r h$
volume of a cylinder	$\pi r^{2} h$
volume of a cone	$\frac{1}{3} \pi r^{2} h$
volume of a pyramid	$\frac{1}{3} A h$
volume of a sphere	$\frac{4}{3} \pi r^{3}$
area of a triangle	$\frac{1}{2} b c \sin (A)$
sine rule	$\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
cosine rule	$c^{2}=a^{2}+b^{2}-2 a b \cos (C)$

Circular functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$	
$1+\tan ^{2}(x)=\sec ^{2}(x)$	$\cot ^{2}(x)+1=\operatorname{cosec}^{2}(x)$
$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$	$\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$	$\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$	$\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}$
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$	
$\sin (2 x)=2 \sin ^{(x) \cos (x)}$	$\tan (2 x)=\frac{2 \tan (x)}{1-\tan (x)}$

Circular functions - continued

Function	$\sin ^{-1}$ or \arcsin	$\cos ^{-1}$ or \arccos	$\tan ^{-1}$ or arctan
Domain	$[-1,1]$	$[-1,1]$	R
Range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+i y=r(\cos (\theta)+i \sin (\theta))=r \operatorname{cis}(\theta)$	
$\|z\|=\sqrt{x^{2}+y^{2}}=r$	$-\pi<\operatorname{Arg}(z) \leq \pi$
$z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$	$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$
$z^{n}=r^{n} \operatorname{cis}(n \theta)($ de Moivre's theorem $)$	

Probability and statistics

for random variables X and Y	$\begin{aligned} & \mathrm{E}(a X+b)=a \mathrm{E}(X)+b \\ & \mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y) \\ & \operatorname{var}(a X+b)=a^{2} \operatorname{var}(X) \end{aligned}$
for independent random variables X and Y	$\operatorname{var}(a X+b Y)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)$
approximate confidence interval for μ	$\left(\bar{x}-z \frac{s}{\sqrt{n}}, \bar{x}+z \frac{s}{\sqrt{n}}\right)$
distribution of sample mean \bar{X}	$\begin{array}{ll} \text { mean } & \mathrm{E}(\bar{X})=\mu \\ \text { variance } & \operatorname{var}(\bar{X})=\frac{\sigma^{2}}{n} \end{array}$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}\|x\|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$	$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$	$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$	$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$	$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$	$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
	$\int(a x+b)^{-1} d x=\frac{1}{a} \log _{e}\|a x+b\|+c$
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule	$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
Euler's method	If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration	$a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
arc length	$\int_{x_{1}}^{x_{2}} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \text { or } \int_{t_{1}}^{t_{2}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$

Vectors in two and three dimensions

$\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}$
$\|\underset{\sim}{\mathrm{r}}\|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{\dot{\mathrm{r}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \underset{\sim}{\mathrm{i}}+\frac{d y}{d t} \mathrm{j}+\frac{d z}{d t} \mathrm{k}$
${\underset{\sim}{\sim}}_{1} \cdot{\underset{\sim}{r}}_{2}=r_{1} r_{2} \cos (\theta)=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$

Mechanics

momentum	$\underset{\sim}{p}=m \underset{\sim}{v}$
equation of motion	$\underset{\sim}{\mathrm{p}}=m \underset{\sim}{\mathrm{a}}$

