Figures
Words

\square
\square

MATHEMATICAL METHODS (CAS) Written examination 1

Friday 3 November 2006
Reading time: 9.00 am to 9.15 am ($\mathbf{1 5}$ minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
11	11	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 10 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1

Let $f(x)=x^{2}+1$ and $g(x)=2 x+1$. Write down the rule of $f(g(x))$.
\qquad
\qquad

Question 2

For the function $f: R \rightarrow R, f(x)=3 e^{2 x}-1$,
a. find the rule for the inverse function f^{-1}
\qquad
\qquad
\qquad
\qquad
b. find the domain of the inverse function f^{-1}.
\qquad
\qquad
1 mark

Question 3

a. Let $f(x)=e^{\cos (x)}$. Find $f^{\prime}(x)$
\qquad
\qquad
\qquad
b. Let $y=x \tan (x)$. Evaluate $\frac{d y}{d x}$ when $x=\frac{\pi}{6}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 4

For the function $f:[-\pi, \pi] \rightarrow R, f(x)=5 \cos \left(2\left(x+\frac{\pi}{3}\right)\right)$
a. write down the amplitude and period of the function
\qquad
\qquad
2 marks
b. sketch the graph of the function f on the set of axes below. Label axes intercepts with their coordinates. Label endpoints of the graph with their coordinates.

Question 5

Let X be a normally distributed random variable with a mean of 72 and a standard deviation of 8 . Let Z be the standard normal random variable. Use the result that $\operatorname{Pr}(\mathbf{Z}<\mathbf{1})=\mathbf{0 . 8 4}$, correct to two decimal places, to find a. the probability that X is greater than 80
\qquad
\qquad
\qquad
\qquad
b. the probability that $64<X<72$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. the probability that $X<64$ given that $X<72$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks

Question 6

The probability density function of a continuous random variable X is given by

$$
f(x)= \begin{cases}\frac{x}{12} & 1 \leq x \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

a. Find $\operatorname{Pr}(X<3)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks
b. If $\operatorname{Pr}(X \geq a)=\frac{5}{8}$, find the value of a.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7

The graph of $f:[-5,1] \rightarrow R$ where $f(x)=x^{3}+6 x^{2}+9 x$ is as shown.

a. On the same set of axes sketch the graph of $y=|f(x)|$.
b. State the range of the function with rule $y=|f(x)|$ and domain $[-5,1]$.
\qquad
\qquad

Question 8

A normal to the graph of $y=\sqrt{x}$ has equation $y=-4 x+a$, where a is a real constant. Find the value of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9

A rectangle $X Y Z W$ has two vertices, X and W, on the x-axis and the other two vertices, Y and Z, on the graph of $y=9-3 x^{2}$, as shown in the diagram below. The coordinates of Z are (a, b) where a and b are positive real numbers.

a. Find the area, A, of rectangle $X Y Z W$ in terms of a.
\qquad
\qquad
1 mark
b. Find the maximum value of A and the value of a for which this occurs.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10

Jo has either tea or coffee at morning break. If she has tea one morning, the probability she has tea the next morning is 0.4 . If she has coffee one morning, the probability she has coffee the next morning is 0.3 . Suppose she has coffee on a Monday morning. What is the probability that she has tea on the following Wednesday morning?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 11

Part of the graph of the function $f: R \rightarrow R, f(x)=-x^{2}+a x+12$ is shown below. If the shaded area is 45 square units, find the values of a, m and n where m and n are the x-axis intercepts of the graph of $y=f(x)$.

\qquad

MATHEMATICAL METHODS AND MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students
Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Mathematical Methods and Mathematical Methods CAS Formulas

Mensuration

area of a trapezium:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
volume of a pyramid: $\quad \frac{1}{3} A h$
volume of a sphere: $\quad \frac{4}{3} \pi r^{3}$
area of a triangle: $\quad \frac{1}{2} b c \sin A$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$
product rule: $\quad \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule: $\quad \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
approximation: $\quad f(x+h) \approx f(x)+h f^{\prime}(x)$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$
$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$
mean: $\quad \mu=\mathrm{E}(X) \quad$ variance: $\quad \operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

probability distribution		mean	variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

