STUDENT NUMBER
Figures
Words

\square
\square

MATHEMATICAL METHODS (CAS) Written examination 1

Friday 9 November 2007
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
12	12	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 9 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1

Let $f(x)=\frac{x^{3}}{\sin (x)}$. Find $f^{\prime}(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks

Question 2

a. \quad Solve the equation $\log _{e}(3 x+5)+\log _{e}(2)=2$, for x.
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks
b. Let $g(x)=\log _{e}(\tan (x))$. Evaluate $g^{\prime}\left(\frac{\pi}{4}\right)$.
\qquad
\qquad
\qquad
\qquad
2 marks

Question 3

The diagram shows the graph of a function with domain R.

a. For the graph shown above, sketch on the same set of axes the graph of the derivative function.
b. Write down the domain of the derivative function.
\qquad
\qquad
\qquad
1 mark

Question 4

A wine glass is being filled with wine at a rate of $8 \mathrm{~cm}^{3} / \mathrm{s}$. The volume, $V \mathrm{~cm}^{3}$, of wine in the glass when the depth of wine in the glass is $x \mathrm{~cm}$ is given by $V=4 x^{\frac{3}{2}}$. Find the rate at which the depth of wine in the glass is increasing when the depth is 4 cm .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5

It is known that 50% of the customers who enter a restaurant order a cup of coffee. If four customers enter the restaurant, what is the probability that more than two of these customers order coffee? (Assume that what any customer orders is independent of what any other customer orders.)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6
Two events, A and B, from a given event space, are such that $\operatorname{Pr}(A)=\frac{1}{5}$ and $\operatorname{Pr}(B)=\frac{1}{3}$.
a. Calculate $\operatorname{Pr}\left(A^{\prime} \cap B\right)$ when $\operatorname{Pr}(A \cap B)=\frac{1}{8}$.
\qquad
\qquad
\qquad
b. Calculate $\operatorname{Pr}\left(A^{\prime} \cap B\right)$ when A and B are mutually exclusive events.
\qquad
\qquad
\qquad
1 mark

Question 7

If $f(x)=x \cos (3 x)$, then $f^{\prime}(x)=\cos (3 x)-3 x \sin (3 x)$.
Use this fact to find an antiderivative of $x \sin (3 x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8

Let $f: R \rightarrow R, f(x)=\sin \left(\frac{2 \pi x}{3}\right)$.
a. Solve the equation $\sin \left(\frac{2 \pi x}{3}\right)=-\frac{\sqrt{3}}{2}$ for $x \in[0,3]$.
\qquad
\qquad
\qquad
\qquad
b. Let $g: R \rightarrow R, g(x)=3 f(x-1)+2$.

Find the smallest positive value of x for which $g(x)$ is a maximum.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9

The graph of $f: R \rightarrow R, f(x)=e^{\frac{x}{2}}+1$ is shown. The normal to the graph of f where it crosses the y-axis is also shown.

a. Find the equation of the normal to the graph of f where it crosses the y-axis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Find the exact area of the shaded region.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10

The area of the region bounded by the curve with equation $y=k x^{\frac{1}{2}}$, where k is a positive constant, the x-axis and the line with equation $x=9$ is 27 . Find k.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 11

There is a daily flight from Paradise Island to Melbourne. The probability of the flight departing on time, given that there is fine weather on the island, is 0.8 , and the probability of the flight departing on time, given that the weather on the island is not fine, is 0.6 .

In March the probability of a day being fine is 0.4 .
Find the probability that on a particular day in March
a. the flight from Paradise Island departs on time
\qquad
\qquad
\qquad
\qquad
b. the weather is fine on Paradise Island, given that the flight departs on time.
\qquad
\qquad

Question 12

P is the point on the line $2 x+y-10=0$ such that the length of $O P$, the line segment from the origin O to P, is a minimum. Find the coordinates of P and this minimum length.
\qquad
4 marks

MATHEMATICAL METHODS AND MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students
Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Mathematical Methods and Mathematical Methods CAS Formulas

Mensuration

area of a trapezium:

$$
\frac{1}{2}(a+b) h
$$

$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
volume of a pyramid: $\quad \frac{1}{3} \mathrm{Ah}$
volume of a sphere: $\quad \frac{4}{3} \pi r^{3}$
area of a triangle: $\quad \frac{1}{2} b c \sin A$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$
product rule: $\quad \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule: $\quad \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
approximation: $\quad f(x+h) \approx f(x)+h f^{\prime}(x)$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$
$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$
mean: $\quad \mu=\mathrm{E}(X) \quad$ variance: $\quad \operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

probability distribution		mean	variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

