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� Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, 
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Materials supplied
� Question and answer book of 12 pages with a detachable sheet of miscellaneous formulas in the 

cen tre fold. 
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� Detach the formula sheet from the centre of this book during reading time.
� Write your student number in the space provided above on this page.

� All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic 
devices into the examination room.
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Instructions
Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude g m/s2, where g = 9.8.

Question 1

Express 
2 3 2
1 3

+
−

i

i
 in polar form.

4 marks
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Question 2

a. Show that 5 − i  is a solution of the equation z i z z i3 25 4 4 5 4 0− − + − + =( ) .

1 mark

b. Find all other solutions of the equation z i z z i3 25 4 4 5 4 0− − + − + =( ) .

2 marks
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Question 3
Find the equation of the tangent to the curve x x y y3 2 22 2 2− + =  at the point P(2, 3).

3 marks
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Question 4

Find the volume generated when the region enclosed by the curve y
x

=
−

1

1 2
, the x-axis, the y-axis and the 

line x = −1
2

 is rotated about the x-axis to form a solid of revolution.

4 marks
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Question 5
A block of mass 6 kg is given an initial push. As a result of this push, the block�s initial velocity is 4 m/s and 
it travels across a horizontal ß oor in a straight line. It comes to rest 3 metres from where it was pushed due to 
the frictional force, F, between the block and the ß oor.

a. Calculate the acceleration of the block across the ß oor.

2 marks

b. Calculate the value of µ, the coefÞ cient of friction between the block and the ß oor. Give your answer in 

the form 
b
cg

 where b and c are positive integers.

2 marks

N

F

6 g
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Question 6
A particle moves so that its velocity at time t is given by 

! ! !
v i + 6 cos 2 jt t t( ) = − ( ) ( )4 2sin  for 0

2
≤ ≤t π .

a. Given that 
! !
r i0 2( ) = , Þ nd the position vector 

!
r( )t  of the particle at any time t.

2 marks

b. Find the cartesian equation of the path followed by the particle.

2 marks

Question 6 � continued
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c. Sketch the path followed by the particle on the axes below.

2 marks

4

3

2

1

�1

�2

�3

�4

�4 �3 �2 �1 1 2 3 4

y

x
O
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Question 7

a. Use Euler�s method to Þ nd y2 if 
dy
dx x

= 1
, given that y0 = y (1) = 1 and h = 0.1. 

 Express your answer as a fraction.

2 marks

b. Solve the differential equation given in part a. to Þ nd the value of y which is estimated by y2. 
 Express your answer in the form loge(a) + b, where a and b are positive real constants.

2 marks
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Question 8

a. Sketch the slope Þ eld of the differential equation 
dy
dx

y= +1
2

2

 for y = �2, �1, 0, 1, 2 at each of the values 
x = �2, �1, 0, 1, 2 on the axes below.

2 marks

b. If y = �1 when x = 0, solve the differential equation given in part a. to Þ nd y in terms of x.

3 marks

c. Sketch the graph of the solution curve found in part b. on the slope Þ eld in part a.
1 mark

3

2

1

�1

�2

�3

�3 �2 �1 1 2 3O

y

x
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END OF QUESTION AND ANSWER BOOK

Question 9
A particle moves in the cartesian plane with position vector 

! ! !
r i j= +x y  where x and y are functions of t. 

If its velocity vector is 
! ! !
v i j= − +y x , Þ nd the acceleration vector of the particle in terms of the position 

vector 
!
r .

3 marks

Question 10

Given that tan 2 4 2
7

x( ) =  where x ∈ 





0
4

, π , Þ nd the exact value of sin(x).

3 marks
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Detach this formula sheet during reading time.
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Specialist Mathematics Formulas

Mensuration

area of a trapezium: 
1
2 a b h+( )

curved surface area of a cylinder: 2π rh

volume of a cylinder: π r2h

volume of a cone: 1
3

2π r h

volume of a pyramid: 1
3 Ah

volume of a sphere: 4
3

3π r

area of a triangle: 
1
2 bc Asin

sine rule: 
a

A
b

B
c

Csin sin sin
= =

cosine rule: c2 = a2 + b2 � 2ab cos C

Coordinate geometry

ellipse:  x h

a

y k

b

−( )
+

−( )
=

2

2

2

2 1 hyperbola:   x h

a

y k

b

−( )
−

−( )
=

2

2

2

2 1

Circular (trigonometric) functions
cos2(x) + sin2(x) = 1

1 + tan2(x) = sec2(x) cot2(x) + 1 = cosec2(x)

sin(x + y) = sin(x) cos(y) + cos(x) sin(y) sin(x � y) = sin(x) cos(y) � cos(x) sin(y)

cos(x + y) = cos(x) cos(y) � sin(x) sin(y) cos(x � y) = cos(x) cos(y) + sin(x) sin(y)

tan( ) tan( ) tan( )
tan( ) tan( )

x y x y
x y

+ = +
−1  tan( ) tan( ) tan( )

tan( ) tan( )
x y x y

x y
− = −

+1

cos(2x) = cos2(x) � sin2(x) = 2 cos2(x) � 1 = 1 � 2 sin2(x)

sin(2x) = 2 sin(x) cos(x) tan( ) tan( )
tan ( )

2 2
1 2x x

x
=

−

function sin�1 cos�1 tan�1

domain [�1, 1] [�1, 1] R

range −





π π
2 2

, [0, !] −





π π
2 2

,
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Algebra (complex numbers)
z = x + yi = r(cos θ + i sin θ) = r cis θ 

z x y r= + =2 2  �π < Arg z ≤ π

z1z2 = r1r2 cis(θ1 + θ2)  
z
z

r
r

1

2

1

2
1 2= −( )cis θ θ

zn = rn cis(nθ) (de Moivre�s theorem)

Calculus
d
dx

x nxn n( ) = −1

 
∫ =

+
+ ≠ −+x dx

n
x c nn n1

1
11 ,

d
dx

e aeax ax( ) =
 

∫ = +e dx
a

e cax ax1

d
dx

x
xelog ( )( )= 1

 
∫ = +1

x
dx x celog

d
dx

ax a axsin( ) cos( )( )=
 

∫ = − +sin( ) cos( )ax dx
a

ax c1

d
dx

ax a axcos( ) sin( )( )= −
 

∫ = +cos( ) sin( )ax dx
a

ax c1

d
dx

ax a axtan( ) sec ( )( )= 2

 
∫ = +sec ( ) tan( )2 1ax dx

a
ax c

d
dx

x
x

sin−( ) =
−

1
2

1

1
( )

 
∫

−
= 





+ >−1 0
2 2

1

a x
dx x

a
c asin ,

d
dx

x
x

cos−( ) = −

−
1

2

1

1
( )

 
∫ −

−
= 





+ >−1 0
2 2

1

a x
dx x

a
c acos ,

d
dx

x
x

tan−( ) =
+

1
2

1
1

( )
 

∫
+

= 





+−a
a x

dx x
a

c2 2
1tan

product rule:  
d
dx

uv u dv
dx

v du
dx

( ) = +

quotient rule:  d
dx

u
v

v du
dx

u dv
dx

v






=
−
2

chain rule:  
dy
dx

dy
du

du
dx

=

Euler�s method:  If 
dy
dx

f x= ( ),  x0 = a and y0 = b, then xn + 1 = xn + h  and  yn + 1 = yn + h f(xn)

acceleration:  a d x
dt

dv
dt

v dv
dx

d
dx

v= = = = 





2

2
21

2

constant (uniform) acceleration: v = u + at s = ut + 
1
2

at2 v2 = u2 + 2as s =  
1
2

 (u + v)t

TURN OVER
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END OF FORMULA SHEET

Vectors in two and three dimensions

r i j k
~ ~ ~ ~

= + +x y z

| r
~ | =    x y z r2 2 2+ + =  r

~ 1. r
~ 2 = r1r2 cos θ = x1x2 + y1y2 + z1z2

!r
r

i j k
~

~
~ ~ ~

= = + +
d

dt
dx
dt

dy
dt

dz
dt

Mechanics

momentum: p v
~ ~

= m

equation of motion: R a
~ ~

= m

friction: F ≤ µN
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