STUDENT NUMBER

Figures
Words

\square

MATHEMATICAL METHODS (CAS) Written examination 1

Friday 6 November 2009
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to $\mathbf{1 0 . 1 5}$ am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 9 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1

a. Differentiate $x \log _{e}(x)$ with respect to x.
\qquad
\qquad
\qquad
\qquad
2 marks
b. For $f(x)=\frac{\cos (x)}{2 x+2}$ find $f^{\prime}(\pi)$.
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 2

a. Find an anti-derivative of $\frac{1}{1-2 x}$ with respect to x.
\qquad
\qquad
\qquad
\qquad
2 marks
b. Evaluate $\int_{1}^{4}(\sqrt{x}+1) d x$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3

Let $f: R \backslash\{0\} \rightarrow R$ where $f(x)=\frac{3}{x}-4$. Find f^{-1}, the inverse function of f.

Question 4

Solve the equation $\tan (2 x)=\sqrt{3}$ for $x \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 5

Four identical balls are numbered 1, 2, 3 and 4 and put into a box. A ball is randomly drawn from the box, and not returned to the box. A second ball is then randomly drawn from the box.
a. What is the probability that the first ball drawn is numbered 4 and the second ball drawn is numbered 1 ?
\qquad
\qquad
\qquad
\qquad
b. What is the probability that the sum of the numbers on the two balls is 5 ?
\qquad
\qquad
\qquad
\qquad
\qquad
1 mark
c. Given that the sum of the numbers on the two balls is 5 , what is the probability that the second ball drawn is numbered 1 ?
\qquad
\qquad
\qquad
\qquad

Question 6

Oil is leaking at a constant rate to form a circular puddle on the floor. The oil is being added to the puddle at the rate of $10 \mathrm{~mm}^{3}$ per minute causing the puddle to spread out evenly, with constant depth of 2 mm .
When the radius of the puddle is $r \mathrm{~mm}$, the volume, $V \mathrm{~mm}^{3}$, of oil in the puddle is given by $V=2 \pi r^{2}$.
Find the rate of change of the radius of the puddle when the radius is 30 mm . Give an exact answer, with units of mm per minute.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 7

The random variable X has this probability distribution.

X	0	1	2	3	4
$\operatorname{Pr}(X=x)$	0.1	0.2	0.4	0.2	0.1

Find
a. $\quad \operatorname{Pr}(X>1 \mid X \leq 3)$
\qquad
\qquad
\qquad
\qquad
2 marks
b. $\operatorname{Var}(X)$, the variance of X.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 8

Let $f: R \rightarrow R, f(x)=e^{x}+k$, where k is a real number. The tangent to the graph of f at the point where $x=a$ passes through the point $(0,0)$. Find the value of k in terms of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 9

Solve the equation $2 \log _{e}(x)-\log _{e}(x+3)=\log _{e}\left(\frac{1}{2}\right)$ for x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10

a. Use the relationship $f(x+h) \approx f(x)+h f^{\prime}(x)$ for a small positive value of h, to find an approximate value for $\sqrt[3]{8.06}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4 marks
b. Explain why this approximate value is greater than the exact value for $\sqrt[3]{8.06}$.
\qquad
\qquad
\qquad
\qquad
1 mark

MATHEMATICAL METHODS AND MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students
Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Mathematical Methods and Mathematical Methods (CAS) Formulas

Mensuration

area of a trapezium:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
volume of a pyramid: $\quad \frac{1}{3} A h$
volume of a sphere: $\quad \frac{4}{3} \pi r^{3}$
area of a triangle: $\quad \frac{1}{2} b c \sin A$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$
product rule: $\quad \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule: $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
approximation: $\quad f(x+h) \approx f(x)+h f^{\prime}(x)$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$
$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$
mean: $\quad \mu=\mathrm{E}(X) \quad$ variance: $\quad \operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

probability distribution		mean	variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

