STUDENT NUMBER

MATHEMATICAL METHODS (CAS) Written examination 1

Wednesday 7 November 2012
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 10 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

Instructions

Answer all questions in the spaces provided.
In all questions where a numerical answer is required an exact value must be given unless otherwise specified.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1

a. If $y=\left(x^{2}-5 x\right)^{4}$, find $\frac{d y}{d x}$.
\qquad
\qquad
\qquad
\qquad
1 mark
b. If $f(x)=\frac{x}{\sin (x)}$, find $f^{\prime}\left(\frac{\pi}{2}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks

Question 2

Find an anti-derivative of $\frac{1}{(2 x-1)^{3}}$ with respect to x.
\qquad
\qquad
\qquad
\qquad

Question 3

The rule for function h is $h(x)=2 x^{3}+1$. Find the rule for the inverse function h^{-1}.

Question 4

On any given day, the number X of telephone calls that Daniel receives is a random variable with probability distribution given by

x	0	1	2	3
$\operatorname{Pr}(X=x)$	0.2	0.2	0.5	0.1

a. Find the mean of X.
\qquad
\qquad
\qquad
\qquad
b. What is the probability that Daniel receives only one telephone call on each of three consecutive days?
\qquad
\qquad
\qquad
\qquad
1 mark
c. Daniel receives telephone calls on both Monday and Tuesday.

What is the probability that Daniel receives a total of four calls over these two days?
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 5

a. Sketch the graph of $f:[0,5] \rightarrow R, f(x)=-|x-3|+2$. Label the axes intercepts and endpoints with their coordinates.

b. i. Find the coordinates of the image of the point $(3,2)$ under a reflection in the x-axis, followed by a translation of 5 units in the positive direction of the x-axis.
\qquad
\qquad
\qquad
\qquad
ii. Find the equation of the image of the graph of f under a reflection in the x-axis, followed by a translation of 5 units in the positive direction of the x-axis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6

The graphs of $y=\cos (x)$ and $y=a \sin (x)$, where a is a real constant, have a point of intersection at $x=\frac{\pi}{3}$.
a. Find the value of a.
\qquad
\qquad
\qquad
\qquad
2 marks
b. If $x \in[0,2 \pi]$, find the x-coordinate of the other point of intersection of the two graphs.
\qquad
\qquad
1 mark

Question 7

Solve the equation $2 \log _{e}(x+2)-\log _{e}(x)=\log _{e}(2 x+1)$, where $x>0$, for x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8

a. The random variable X is normally distributed with mean 100 and standard deviation 4.

If $\operatorname{Pr}(X<106)=q$, find $\operatorname{Pr}(94<X<100)$ in terms of q.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. The probability density function f of a random variable X is given by

$$
f(x)=\left\{\begin{array}{cl}
\frac{x+1}{12} & 0 \leq x \leq 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the value of b such that $\operatorname{Pr}(X \leq b)=\frac{5}{8}$.
\qquad

Question 9

a. Let $f: R \rightarrow R, f(x)=x \sin (x)$.

Find $f^{\prime}(x)$.
\qquad
\qquad
\qquad
\qquad
b. Use the result of part a. to find the value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} x \cos (x) d x$ in the form $a \pi+b$.
\qquad
3 marks

Question 10

Let $f: R \rightarrow R, f(x)=e^{-m x}+3 x$, where m is a positive rational number.
a. i. Find, in terms of m, the x-coordinate of the stationary point of the graph of $y=f(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
ii. State the values of m such that the x-coordinate of this stationary point is a positive number.
\qquad
\qquad
\qquad

$$
2+1=3 \text { marks }
$$

b. For a particular value of m, the tangent to the graph of $y=f(x)$ at $x=-6$ passes through the origin.

Find this value of m.
\qquad

MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Mathematical Methods (CAS)
 Formulas

Mensuration

area of a trapezium:

$$
\begin{array}{lll}
\frac{1}{2}(a+b) h & \text { volume of a pyramid: } & \frac{1}{3} A h \\
2 \pi r h & & \frac{4}{3} \pi r^{3} \\
\pi r^{2} h & \text { volume of a sphere: } & \\
& \text { area of a triangle: } & \frac{1}{2} b c \sin A
\end{array}
$$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$
product rule: $\quad \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
quotient rule: $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
approximation: $\quad f(x+h) \approx f(x)+h f^{\prime}(x)$

Probability

$\begin{array}{ll}\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right) & \operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) \\ \operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} & \text { transition matrices: } \quad S_{n}=T^{n} \times S_{0} \\ \text { mean: } \quad \mu=\mathrm{E}(X) & \text { variance: } \quad \operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}\end{array}$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

