STUDENT NUMBER

\square

MATHEMATICAL METHODS (CAS) Written examination 1

Wednesday 6 November 2013
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 14 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (5 marks)
a. If $y=x^{2} \log _{e}(x)$, find $\frac{d y}{d x}$. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
b. Let $f(x)=e^{x^{2}}$.

Find $f^{\prime}(3)$. 3 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 (2 marks)
Find an anti-derivative of $(4-2 x)^{-5}$ with respect to x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (2 marks)
The function with rule $g(x)$ has derivative $g^{\prime}(x)=\sin (2 \pi x)$.
Given that $g(1)=\frac{1}{\pi}$, find $g(x)$.

Question 4 (2 marks)
Solve the equation $\sin \left(\frac{x}{2}\right)=-\frac{1}{2}$ for $x \in[2 \pi, 4 \pi]$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 (4 marks)
a. \quad Solve the equation $2 \log _{3}(5)-\log _{3}(2)+\log _{3}(x)=2$ for x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Solve the equation $3^{-4 x}=9^{6-x}$ for x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 (3 marks)
Let $g: R \rightarrow R, g(x)=(a-x)^{2}$, where a is a real constant.
The average value of g on the interval $[-1,1]$ is $\frac{31}{12}$.
Find all possible values of a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 (6 marks)
The probability distribution of a discrete random variable, X, is given by the table below.

x	0	1	2	3	4
$\operatorname{Pr}(X=x)$	0.2	$0.6 p^{2}$	0.1	$1-p$	0.1

a. Show that $p=\frac{2}{3}$ or $p=1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 - continued
b. \quad Let $p=\frac{2}{3}$.
i. Calculate $E(X)$.
ii. Find $\operatorname{Pr}(X \geq E(X))$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 (3 marks)

A continuous random variable, X, has a probability density function
$f(x)=\left\{\begin{array}{cl}\frac{\pi}{4} \cos \left(\frac{\pi x}{4}\right) & \text { if } x \in[0,2] \\ 0 & \text { otherwise }\end{array}\right.$
Given that $\frac{d}{d x}\left(x \sin \left(\frac{\pi x}{4}\right)\right)=\frac{\pi x}{4} \cos \left(\frac{\pi x}{4}\right)+\sin \left(\frac{\pi x}{4}\right)$, find $E(X)$.
\qquad

CONTINUES OVER PAGE

Question 9 (6 marks)

The graph of $f(x)=(x-1)^{2}-2, x \in[-2,2]$, is shown below. The graph intersects the x-axis where $x=a$.

a. Find the value of a.

1 mark
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. On the axes above, sketch the graph of $g(x)=|f(x)|+1$, for $x \in[-2,2]$. Label the end points with their coordinates.
c. The following sequence of transformations is applied to the graph of the function
$g:[-2,2] \rightarrow R, g(x)=|f(x)|+1$.

- a translation of one unit in the negative direction of the x-axis
- a translation of one unit in the negative direction of the y-axis
- a dilation from the x-axis of factor $\frac{1}{3}$

Find
i. the rule of the image of g after the sequence of transformations has been applied
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii. the domain of the image of g after the sequence of transformations has been applied.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10 (7 marks)
Let $f:[0, \infty) \rightarrow R, f(x)=2 e^{-\frac{x}{5}}$.
A right-angled triangle $O Q P$ has vertex O at the origin, vertex Q on the x-axis and vertex P on the graph of f, as shown. The coordinates of P are $(x, f(x))$.

a. Find the area, A, of the triangle $O Q P$ in terms of x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Find the maximum area of triangle $O Q P$ and the value of x for which the maximum occurs. 3 marks
\qquad
c. Let S be the point on the graph of f on the y-axis and let T be the point on the graph of f with the y-coordinate $\frac{1}{2}$.
Find the area of the region bounded by the graph of f and the line segment $S T$.

\qquad

MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Mathematical Methods (CAS)
 Formulas

Mensuration

area of a trapezium:

$$
\begin{array}{lll}
\frac{1}{2}(a+b) h & \text { volume of a pyramid: } & \frac{1}{3} A h \\
2 \pi r h & & \frac{4}{3} \pi r^{3} \\
\pi r^{2} h & \text { volume of a sphere: } & \\
& \text { area of a triangle: } & \frac{1}{2} b c \sin A
\end{array}
$$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$
product rule: $\quad \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
quotient rule: $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
approximation: $\quad f(x+h) \approx f(x)+h f^{\prime}(x)$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$
mean: $\quad \mu=\mathrm{E}(X)$

$$
\begin{aligned}
& \operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) \\
& \text { transition matrices: } \quad S_{n}=T^{n} \times S_{0} \\
& \text { variance: } \quad \operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

