SPECIALIST MATHEMATICS
 Written examination 1

Friday 8 November 2013
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 11 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

```
Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.
```


THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.
Unless otherwise specified, an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} / \mathrm{s}^{2}$, where $g=9.8$.

Question 1 (3 marks)
A body of mass 10 kg is held in place on a smooth plane inclined at 30° to the horizontal by a tension force, T newtons, acting parallel to the plane.
a. On the diagram below, show all other forces acting on the body and label them.

b. Find the value of T.

2 marks
\qquad
\qquad
\qquad
\qquad

Question 2 (4 marks)
Evaluate $\int_{0}^{1} \frac{x-5}{x^{2}-5 x+6} d x$.
\qquad

Question 3 (4 marks)
The coordinates of three points are $A(-1,2,4), B(1,0,5)$ and $C(3,5,2)$.
a. Find $\overrightarrow{A B}$.
b. The points A, B and C are the vertices of a triangle.

Prove that the triangle has a right angle at A.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Find the length of the hypotenuse of the triangle.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (6 marks)
a. State the maximal domain and the range of $y=\arccos (1-2 x)$.
\qquad
\qquad
\qquad
b. Sketch the graph of $y=\arccos (1-2 x)$ over its maximal domain. Label the endpoints with their coordinates.

c. Find the gradient of the tangent to the graph of $y=\arccos (1-2 x)$ at $x=\frac{1}{4}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 (5 marks)
A container of water is heated to boiling point $\left(100^{\circ} \mathrm{C}\right)$ and then placed in a room that has a constant temperature of $20^{\circ} \mathrm{C}$. After five minutes the temperature of the water is $80^{\circ} \mathrm{C}$.
a. Use Newton's law of cooling $\frac{d T}{d t}=-k(T-20)$, where $T^{\circ} \mathrm{C}$ is the temperature of the water at time t minutes after the water is placed in the room, to show that $e^{-5 k}=\frac{3}{4}$. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Find the temperature of the water 10 minutes after it is placed in the room.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 (4 marks)
Find the value of c, where $c \in R$, such that the curve defined by

$$
y^{2}+\frac{3 e^{(x-1)}}{x-2}=c
$$

has a gradient of 2 where $x=1$.

Question 7 (6 marks)
The position vector $\underset{\sim}{\mathrm{r}}(t)$ of a particle moving relative to an origin O at time t seconds is given by

$$
\underset{\sim}{\mathrm{r}}(t)=4 \sec (t) \underset{\sim}{\mathrm{i}}+2 \tan (t) \underset{\sim}{\mathrm{j}}, t \in\left[0, \frac{\pi}{2}\right)
$$

where the components are measured in metres.
a. Show that the cartesian equation of the path of the particle is $\frac{x^{2}}{16}-\frac{y^{2}}{4}=1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Sketch the path of the particle on the axes below, labelling any asymptotes with their equations.

c. Find the speed of the particle, in ms^{-1}, when $t=\frac{\pi}{4}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 (4 marks)
Find all solutions of $z^{4}-2 z^{2}+4=0, z \in C$ in cartesian form.

Question 9 (4 marks)

The shaded region below is enclosed by the graph of $y=\sin (x)$ and the lines $y=3 x$ and $x=\frac{\pi}{3}$. This region is rotated about the x-axis.

Find the volume of the resulting solid of revolution.
\qquad

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Specialist Mathematics formulas

Mensuration

area of a trapezium:
curved surface area of a cylinder:
volume of a cylinder:
volume of a cone:
volume of a pyramid:
volume of a sphere:
area of a triangle:
sine rule:
cosine rule:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
$\frac{1}{3} A h$
$\frac{4}{3} \pi r^{3}$
$\frac{1}{2} b c \sin A$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Coordinate geometry

ellipse: $\quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ hyperbola: $\quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Circular (trigonometric) functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$
$1+\tan ^{2}(x)=\sec ^{2}(x)$

$$
\begin{aligned}
& \cot ^{2}(x)+1=\operatorname{cosec}^{2}(x) \\
& \sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y) \\
& \cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y) \\
& \tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}
\end{aligned}
$$

$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$
$\sin (2 x)=2 \sin (x) \cos (x)$
$\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}$

function	$\sin ^{-1}$	$\cos ^{-1}$	$\tan ^{-1}$
domain	$[-1,1]$	$[-1,1]$	R
range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+y i=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$
$|z|=\sqrt{x^{2}+y^{2}}=r$

$$
\begin{aligned}
& -\pi<\operatorname{Arg} z \leq \pi \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

$z^{n}=r^{n} \operatorname{cis}(n \theta)$ (de Moivre's theorem)

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$
$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$
$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$
$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
product rule:

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

quotient rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Euler's method: If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration:

$$
a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

constant (uniform) acceleration: $v=u+a t$

$$
s=u t+\frac{1}{2} a t^{2} \quad v^{2}=u^{2}+2 a s \quad s=\frac{1}{2}(u+v) t
$$

Vectors in two and three dimensions

$$
\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}
$$

$|\underset{\sim}{\mathbf{r}}|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{r}{ }_{1} \cdot \underset{\sim}{r}{ }_{2}=r_{1} r_{2} \cos \theta=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\underset{\sim}{\dot{\mathrm{r}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \underset{\sim}{\mathrm{i}}+\frac{d y}{d t} \underset{\sim}{\mathrm{j}}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$

Mechanics

momentum:
equation of motion:
$\underset{\sim}{\mathrm{p}}=m \underset{\sim}{\mathrm{v}}$
friction:
$\mathrm{R}=m \mathrm{a}$
$F \leq \mu N$

