MATHEMATICAL METHODS (CAS) Written examination 1

Wednesday 5 November 2014
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 12 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (5 marks)
a. If $y=x^{2} \sin (x)$, find $\frac{d y}{d x}$.
\qquad
\qquad
\qquad
\qquad
b. If $f(x)=\sqrt{x^{2}+3}$, find $f^{\prime}(1)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 (2 marks)
Let $\int_{4}^{5} \frac{2}{2 x-1} d x=\log _{e}(b)$.
Find the value of b.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (2 marks)
Solve $2 \cos (2 x)=-\sqrt{3}$ for x, where $0 \leq x \leq \pi$.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (2 marks)
Solve the equation $2^{3 x-3}=8^{2-x}$ for x.

Question 5 (7 marks)
Consider the function $f:[-1,3] \rightarrow R, f(x)=3 x^{2}-x^{3}$.
a. Find the coordinates of the stationary points of the function.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. On the axes below, sketch the graph of f.

Label any end points with their coordinates.

Question 5 - continued
c. Find the area enclosed by the graph of the function and the horizontal line given by $y=4$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 (2 marks)
Solve $\log _{e}(x)-3=\log _{e}(\sqrt{x})$ for x, where $x>0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 (3 marks)
If $f^{\prime}(x)=2 \cos (x)-\sin (2 x)$ and $f\left(\frac{\pi}{2}\right)=\frac{1}{2}$, find $f(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 (4 marks)
A continuous random variable, X, has a probability density function given by

$$
f(x)= \begin{cases}\frac{1}{5} e^{-\frac{x}{5}} & x \geq 0 \\ 0 & x<0\end{cases}
$$

The median of X is m.
a. Determine the value of m.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. The value of m is a number greater than 1 .

Find $\operatorname{Pr}(X<1 \mid X \leq m)$. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9 (6 marks)
Sally aims to walk her dog, Mack, most mornings. If the weather is pleasant, the probability that she will walk Mack is $\frac{3}{4}$, and if the weather is unpleasant, the probability that she will walk Mack is $\frac{1}{3}$.

Assume that pleasant weather on any morning is independent of pleasant weather on any other morning.
a. In a particular week, the weather was pleasant on Monday morning and unpleasant on Tuesday morning.

Find the probability that Sally walked Mack on at least one of these two mornings.
\qquad
\qquad
\qquad
\qquad
\qquad
b. In the month of April, the probability of pleasant weather in the morning was $\frac{5}{8}$.
i. Find the probability that on a particular morning in April, Sally walked Mack.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii. Using your answer from part b.i., or otherwise, find the probability that on a particular morning in April, the weather was pleasant, given that Sally walked Mack that morning.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10 (7 marks)

A line intersects the coordinate axes at the points U and V with coordinates $(u, 0)$ and $(0, v)$, respectively, where u and v are positive real numbers and $\frac{5}{2} \leq u \leq 6$.
a. When $u=6$, the line is a tangent to the graph of $y=a x^{2}+b x$ at the point Q with coordinates $(2,4)$, as shown.

If a and b are non-zero real numbers, find the values of a and b.
\qquad
b. The rectangle $O P Q R$ has a vertex at Q on the line. The coordinates of Q are $(2,4)$, as shown.

i. Find an expression for v in terms of u.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii. Find the minimum total shaded area and the value of u for which the area is a minimum.
\qquad
iii. Find the maximum total shaded area and the value of u for which the area is a maximum.
\qquad
\qquad
\qquad

MATHEMATICAL METHODS (CAS)

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Mathematical Methods (CAS)
 Formulas

Mensuration

area of a trapezium:

$$
\frac{1}{2}(a+b) h \quad \text { volume of a pyramid: } \quad \frac{1}{3} A h
$$

curved surface area of a cylinder: $\quad 2 \pi r h$
volume of a cylinder: $\quad \pi r^{2} h$
volume of a cone:

$$
\frac{1}{3} \pi r^{2} h
$$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}+c \\
& \int \frac{1}{x} d x=\log _{e}|x|+c
\end{aligned}
$$

$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$

$$
\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c
$$

$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$
product rule: $\quad \frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
quotient rule: $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
approximation: $\quad f(x+h) \approx f(x)+h f^{\prime}(x)$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$
mean: $\quad \mu=\mathrm{E}(X)$

$$
\begin{aligned}
& \operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B) \\
& \text { transition matrices: } \quad S_{n}=T^{n} \times S_{0} \\
& \text { variance: } \quad \operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

