Victorian Certificate of Education

2014

Letter

STUDENT NUMBER | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SPECIALIST MATHEMATICS
 Written examination 1

Friday 7 November 2014
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book		
Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are not permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your student number in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.
Unless otherwise specified, an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} / \mathrm{s}^{2}$, where $g=9.8$.

Question 1 (5 marks)

Consider the vector $\underset{\sim}{a}=\sqrt{3} \underset{\sim}{i}-\underset{\sim}{j}-\sqrt{2} \underset{\sim}{k}$, where $\underset{\sim}{i}, \underset{\sim}{j}$ and $\underset{\sim}{\mathrm{k}}$ are unit vectors in the positive directions of the x, y and z axes respectively.
a. Find the unit vector in the direction of a.
\qquad
\qquad
\qquad
b. Find the acute angle that a makes with the positive direction of the x-axis.
\qquad
\qquad
\qquad
\qquad
c. The vector $\underset{\sim}{\mathrm{b}}=2 \sqrt{3} \underset{\sim}{\mathrm{i}}+m \mathrm{j}-5 \underset{\sim}{\mathrm{k}}$.

Given that $\underset{\sim}{b}$ is perpendicular to a , find the value of m.
\qquad
\qquad
\qquad

Question 2 (5 marks)
The position vector of a particle at time $t \geq 0$ is given by

$$
\underset{\sim}{\mathrm{r}}(t)=(t-2) \underset{\sim}{\mathrm{i}}+\left(t^{2}-4 t+1\right) \underset{\sim}{\mathrm{j}}
$$

a. Show that the cartesian equation of the path followed by the particle is $y=x^{2}-3$.
\qquad
\qquad
\qquad
\qquad
b. Sketch the path followed by the particle on the axes below, labelling all important features.

c. Find the speed of the particle when $t=1$.
\qquad
\qquad
\qquad
\qquad

Question 3 (5 marks)
Let f be a function of a complex variable, defined by the rule $f(z)=z^{4}-4 z^{3}+7 z^{2}-4 z+6$.
a. Given that $z=i$ is a solution of $f(z)=0$, write down a quadratic factor of $f(z)$.
b. Given that the other quadratic factor of $f(z)$ has the form $z^{2}+b z+c$, find all solutions of $z^{4}-4 z^{3}+7 z^{2}-4 z+6=0$ in cartesian form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (3 marks)
Find the gradient of the normal to the curve defined by $y=-3 e^{3 x} e^{y}$ at the point $(1,-3)$.

Question 5 (5 marks)
a. For the function with rule $f(x)=96 \cos (3 x) \sin (3 x)$, find the value of a such that $f(x)=a \sin (6 x)$.
\qquad
\qquad
\qquad
b. Use an appropriate substitution in the form $u=g(x)$ to find an equivalent definite integral for $\int_{\frac{\pi}{36}}^{\frac{\pi}{12}} 96 \cos (3 x) \sin (3 x) \cos ^{2}(6 x) d x$ in terms of u only. 3 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Hence evaluate $\int_{\frac{\pi}{36}}^{\frac{\pi}{12}} 96 \cos (3 x) \sin (3 x) \cos ^{2}(6 x) d x$, giving your answer in the form $\sqrt{k}, k \in Z$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 (5 marks)

a. Verify that $\frac{a}{a-4}=1+\frac{4}{a-4}$.
\qquad
\qquad
\qquad

Part of the graph of $y=\frac{x}{\sqrt{\left(x^{2}-4\right)}}$ is shown below.

b. The region enclosed by the graph of $y=\frac{x}{\sqrt{\left(x^{2}-4\right)}}$ and the lines $y=0, x=3$ and $x=4$ is rotated about the x-axis.

Find the volume of the resulting solid of revolution.
\qquad

Question 7 (5 marks)
Consider $f(x)=3 x \arctan (2 x)$.
a. Write down the range of f.
b. Show that $f^{\prime}(x)=3 \arctan (2 x)+\frac{6 x}{1+4 x^{2}}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Hence evaluate the area enclosed by the graph of $g(x)=\arctan (2 x)$, the x-axis and the lines $x=\frac{1}{2}$ and $x=\frac{\sqrt{3}}{2}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 (7 marks)

A body of mass 5 kg is held in equilibrium by two light inextensible strings. One string is attached to a ceiling at A and the other to a wall at B. The string attached to the ceiling is at an angle θ to the vertical and has tension T_{1} newtons, and the other string is horizontal and has tension T_{2} newtons. Both strings are made of the same material.

a. i. Resolve the forces on the body vertically and horizontally, and express T_{1} in terms of θ.
\qquad
\qquad
\qquad
ii. Express T_{2} in terms of θ.
\qquad
\qquad
b. Show that $\tan (\theta)<\sec (\theta)$ for $0<\theta<\frac{\pi}{2}$.
\qquad
\qquad
\qquad
c. The type of string used will break if it is subjected to a tension of more than 98 N .

Find the maximum allowable value of θ so that neither string will break.
\qquad
\qquad
\qquad
\qquad
\qquad

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Specialist Mathematics formulas

Mensuration

area of a trapezium:
curved surface area of a cylinder:
volume of a cylinder:
volume of a cone:
volume of a pyramid:
volume of a sphere:
area of a triangle:
sine rule:
cosine rule:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
$\frac{1}{3} A h$
$\frac{4}{3} \pi r^{3}$
$\frac{1}{2} b c \sin A$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Coordinate geometry

ellipse: $\quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ hyperbola: $\quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Circular (trigonometric) functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$
$1+\tan ^{2}(x)=\sec ^{2}(x)$

$$
\begin{aligned}
& \cot ^{2}(x)+1=\operatorname{cosec}^{2}(x) \\
& \sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y) \\
& \cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y) \\
& \tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}
\end{aligned}
$$

$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$
$\sin (2 x)=2 \sin (x) \cos (x)$
$\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}$

function	$\sin ^{-1}$	$\cos ^{-1}$	$\tan ^{-1}$
domain	$[-1,1]$	$[-1,1]$	R
range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+y i=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$
$|z|=\sqrt{x^{2}+y^{2}}=r$

$$
\begin{aligned}
& -\pi<\operatorname{Arg} z \leq \pi \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

$z^{n}=r^{n} \operatorname{cis}(n \theta)$ (de Moivre's theorem)

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\int \frac{1}{x} d x=\log _{e}|x|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$
$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$
$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$
$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
product rule:

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

quotient rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Euler's method: If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration:

$$
a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

constant (uniform) acceleration: $v=u+a t$

$$
s=u t+\frac{1}{2} a t^{2} \quad v^{2}=u^{2}+2 a s \quad s=\frac{1}{2}(u+v) t
$$

Vectors in two and three dimensions

$$
\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}
$$

$|\underset{\sim}{\mathbf{r}}|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{r}{ }_{1} \cdot \underset{\sim}{r}{ }_{2}=r_{1} r_{2} \cos \theta=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\underset{\sim}{\dot{\mathrm{r}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \underset{\sim}{\mathrm{i}}+\frac{d y}{d t} \underset{\sim}{\mathrm{j}}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$

Mechanics

momentum:
equation of motion:
$\underset{\sim}{\mathrm{p}}=m \underset{\sim}{\mathrm{v}}$
friction:
$\mathrm{R}=m \mathrm{a}$
$F \leq \mu N$

