Victorian Certificate of Education 2018

\square
\square
\square

SPECIALIST MATHEMATICS
 Written examination 1

Friday 9 November 2018
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book			
Number of questions	Number of questions to be answered	Number of marks	
10	10	40	

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 9 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.
Unless otherwise specified, an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~ms}^{-2}$, where $g=9.8$

Question 1 (4 marks)
Two objects of masses 5 kg and 8 kg are attached by a light inextensible string that passes over a smooth pulley. The 8 kg mass is on a smooth plane inclined at 30° to the horizontal. The 5 kg mass is hanging vertically, as shown in the diagram below.

a. On the diagram above, show all forces acting on both masses.
b. Find the magnitude, in ms^{-2}, and state the direction of the acceleration of the 8 kg mass.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 (4 marks)
a. Show that $1+i=\sqrt{2} \operatorname{cis}\left(\frac{\pi}{4}\right)$.
\qquad
\qquad
\qquad
b. Evaluate $\frac{(\sqrt{3}-i)^{10}}{(1+i)^{12}}$, giving your answer in the form $a+b i$, where $a, b \in R$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (4 marks)
Find the gradient of the curve with equation $2 x^{2} \sin (y)+x y=\frac{\pi^{2}}{18}$ at the point $\left(\frac{\pi}{6}, \frac{\pi}{6}\right)$. Give your answer in the form $\frac{a}{\pi \sqrt{b}+c}$, where a, b and c are integers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (4 marks)

X and Y are independent random variables. The mean and the variance of X are both 2, while the mean and the variance of Y are 2 and 4 respectively.

Given that a and b are integers, find the values of a and b if the mean and the variance of $a X+b Y$ are 10 and 44 respectively.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 (4 marks)
Sketch the graph of $f(x)=\frac{x+1}{x^{2}-4}$ on the axes provided below, labelling any asymptotes with their equations and any intercepts with their coordinates.

Question 6 (3 marks)
A particle of mass 2 kg moves under a force $\underset{\sim}{\mathrm{F}}$ so that its position vector $\underset{\sim}{\mathrm{r}}$ at any time t is given by $\underset{\sim}{\mathrm{r}}=\sin (t) \underset{\sim}{\mathrm{i}}+\cos (t) \underset{\sim}{\mathrm{j}}+t^{2} \underset{\sim}{\mathrm{k}}$. Distances are measured in metres and time is measured in seconds.

Find the change in momentum, in $\mathrm{kg} \mathrm{ms}^{-2}$, from $t=\frac{\pi}{2}$ to $t=\pi$.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 7 (3 marks)
Given that $\cot (2 x)+\frac{1}{2} \tan (x)=a \cot (x)$, use a suitable double angle formula to find the value of $a, a \in R$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 (4 marks)
A tank initially holds 16 L of water in which 0.5 kg of salt has been dissolved. Pure water then flows into the tank at a rate of 5 L per minute. The mixture is stirred continuously and flows out of the tank at a rate of 3 L per minute.
a. Show that the differential equation for Q, the number of kilograms of salt in the tank after t minutes, is given by

$$
\frac{d Q}{d t}=-\frac{3 Q}{16+2 t}
$$

\qquad
\qquad
\qquad
\qquad
b. Solve the differential equation given in part a. to find Q as a function of t. Express your answer in the form $Q=\frac{a}{b}$, where a, b and c are positive integers. $(16+2 t)^{\bar{c}}$
\qquad

Question 9 (5 marks)

A curve is specified parametrically by $\underset{\sim}{\mathrm{r}}(t)=\sec (t) \underset{\sim}{\dot{\sim}}+\frac{\sqrt{2}}{2} \tan (t) \underset{\sim}{\mathrm{j}}, t \in R$.
a. Show that the cartesian equation of the curve is $x^{2}-2 y^{2}=1$.
\qquad
\qquad
\qquad
\qquad
b. Find the x-coordinates of the points of intersection of the curve $x^{2}-2 y^{2}=1$ and the line $y=x-1$.
\qquad
\qquad
\qquad
\qquad
c. Find the volume of the solid of revolution formed when the region bounded by the curve and the line is rotated about the x-axis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 10 (5 marks)
The position vector of a particle moving along a curve at time t seconds is given by
$\underset{\sim}{\mathrm{r}}(t)=\frac{t^{3}}{3} \underset{\sim}{\mathrm{\sim}}+\left(\arcsin (t)+t \sqrt{1-t^{2}}\right) \underset{\sim}{\mathrm{\sim}}, 0 \leq t \leq 1$, where distances are measured in metres.
The distance d metres that the particle travels along the curve in three-quarters of a second is given by

$$
d=\int_{0}^{\frac{3}{4}}\left(a t^{2}+b t+c\right) d t
$$

Find a, b and c, where $a, b, c \in Z$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Victorian Certificate of Education 2018

SPECIALIST MATHEMATICS
 Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Specialist Mathematics formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$
curved surface area of a cylinder	$2 \pi r h$
volume of a cylinder	$\pi r^{2} h$
volume of a cone	$\frac{1}{3} \pi r^{2} h$
volume of a pyramid	$\frac{1}{3} A h$
volume of a sphere	$\frac{4}{3} \pi r^{3}$
area of a triangle	$\frac{1}{2} b c \sin (A)$
sine rule	$\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
cosine rule	$c^{2}=a^{2}+b^{2}-2 a b \cos (C)$

Circular functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$	
$1+\tan ^{2}(x)=\sec ^{2}(x)$	$\cot ^{2}(x)+1=\operatorname{cosec}^{2}(x)$
$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$	$\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$	$\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$	$\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}$
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$	
$\sin (2 x)=2 \sin ^{(x) \cos (x)}$	$\tan (2 x)=\frac{2 \tan (x)}{1-\tan (x)}$

Circular functions - continued

Function	$\sin ^{-1}$ or \arcsin	$\cos ^{-1}$ or \arccos	$\tan ^{-1}$ or arctan
Domain	$[-1,1]$	$[-1,1]$	R
Range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+i y=r(\cos (\theta)+i \sin (\theta))=r \operatorname{cis}(\theta)$	
$\|z\|=\sqrt{x^{2}+y^{2}}=r$	$-\pi<\operatorname{Arg}(z) \leq \pi$
$z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$	$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$
$z^{n}=r^{n} \operatorname{cis}(n \theta)($ de Moivre's theorem $)$	

Probability and statistics

for random variables X and Y	$\begin{aligned} & \mathrm{E}(a X+b)=a \mathrm{E}(X)+b \\ & \mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y) \\ & \operatorname{var}(a X+b)=a^{2} \operatorname{var}(X) \end{aligned}$
for independent random variables X and Y	$\operatorname{var}(a X+b Y)=a^{2} \operatorname{var}(X)+b^{2} \operatorname{var}(Y)$
approximate confidence interval for μ	$\left(\bar{x}-z \frac{s}{\sqrt{n}}, \bar{x}+z \frac{s}{\sqrt{n}}\right)$
distribution of sample mean \bar{X}	$\begin{array}{ll} \text { mean } & \mathrm{E}(\bar{X})=\mu \\ \text { variance } & \operatorname{var}(\bar{X})=\frac{\sigma^{2}}{n} \end{array}$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}\|x\|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$	$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$	$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$	$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$	$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$	$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
	$\int(a x+b)^{-1} d x=\frac{1}{a} \log _{e}\|a x+b\|+c$
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule	$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
Euler's method	If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration	$a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
arc length	$\int_{x_{1}}^{x_{2}} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \text { or } \int_{t_{1}}^{t_{2}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$

Vectors in two and three dimensions

$\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}$
$\|\underset{\sim}{\mathrm{r}}\|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{\dot{\mathrm{r}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \underset{\sim}{\mathrm{i}}+\frac{d y}{d t} \mathrm{j}+\frac{d z}{d t} \mathrm{k}$
${\underset{\sim}{\sim}}_{1} \cdot{\underset{\sim}{r}}_{2}=r_{1} r_{2} \cos (\theta)=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$

Mechanics

momentum	$\underset{\sim}{p}=m \underset{\sim}{v}$
equation of motion	$\underset{\sim}{\mathrm{p}}=m \underset{\sim}{\mathrm{a}}$

