MATHEMATICAL METHODS
 Written examination 1

Friday 1 June 2018
Reading time: 2.00 pm to 2.15 pm ($\mathbf{1 5}$ minutes)
Writing time: 2.15 pm to 3.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 13 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

> Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (4 marks)
a. Let $f(x)=\frac{e^{x}}{\left(x^{2}-3\right)}$.

Find $f^{\prime}(x)$. 2 marks
\qquad
\qquad
\qquad
\qquad
b. Let $y=(x+5) \log _{e}(x)$.

Find $\frac{d y}{d x}$ when $x=5$. 2 marks

Question 2 (4 marks)
Let $f(x)=-x^{2}+x+4$ and $g(x)=x^{2}-2$.
a. Find $g(f(3))$. 2 marks
\qquad
\qquad
\qquad
b. Express the rule for $f(g(x))$ in the form $a x^{4}+b x^{2}+c$, where a, b and c are non-zero integers. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (2 marks)
Evaluate $\int_{0}^{1} e^{x}-e^{-x} d x$.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (3 marks)
Solve $\log _{3}(t)-\log _{3}\left(t^{2}-4\right)=-1$ for t.

Question 5 (3 marks)

Let $h: R^{+} \cup\{0\} \rightarrow R, h(x)=\frac{7}{x+2}-3$.
a. State the range of $h .1$ mark
\qquad
\qquad
\qquad
b. Find the rule for h^{-1}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 (4 marks)
The discrete random variable X has the probability mass function

$$
\operatorname{Pr}(X=x)= \begin{cases}k x & x \in\{1,4,6\} \\ k & x=3 \\ 0 & \text { otherwise }\end{cases}
$$

a. Show that $k=\frac{1}{12}$.
\qquad
\qquad
\qquad
\qquad
b. Find $\mathrm{E}(X)$.
c. Evaluate $\operatorname{Pr}(X \geq 3 \mid X \geq 2)$.

1 mark

Question 7 (9 marks)

Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow R, f(x)=4 \cos (x)$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R, g(x)=3 \sin (x)$.
a. Sketch the graph of f and the graph of g on the axes provided below.

b. Let c be such that $f(c)=g(c)$, where $c \in\left[0, \frac{\pi}{2}\right]$.
\qquad
\qquad
\qquad
\qquad
\qquad
c. Let A be the region enclosed by the horizontal axis, the graph of f and the graph of g.
i. Shade the region A on the axes provided in part a. and also label the position of c on the horizontal axis.
ii. Calculate the area of the region A.

3 marks
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 (3 marks)

Let \hat{P} be the random variable that represents the sample proportions of customers who bring their own shopping bags to a large shopping centre.
From a sample consisting of all customers on a particular day, an approximate 95% confidence interval for the proportion p of customers who bring their own shopping bags to this large shopping centre was determined to be $\left(\frac{4853}{50000}, \frac{5147}{50000}\right)$.
a. Find the value of \hat{p} that was used to obtain this approximate 95% confidence interval. 1 mark
\qquad
\qquad
\qquad
\qquad
b. Use the fact that $1.96=\frac{49}{25}$ to find the size of the sample from which this approximate 95% confidence interval was obtained.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9 (8 marks)
The diagram below shows a trapezium with vertices at $(0,0),(0,2),(3,2)$ and $(b, 0)$, where b is a real number and $0<b<2$.

On the same axes as the trapezium, part of the graph of a cubic polynomial function is drawn. It has the rule $y=a x(x-b)^{2}$, where a is a non-zero real number and $0 \leq x \leq b$.
a. At the local maximum of the graph, $y=b$.

Find a in terms of b.
\qquad

Question 9 - continued

The area between the graph of the function and the x-axis is removed from the trapezium, as shown in the diagram below.

b. Show that the expression for the area of the shaded region is $b+3-\frac{9 b^{2}}{16}$ square units.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Find the value of b for which the area of the shaded region is a maximum and find this maximum area.

Victorian Certificate of Education 2018

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$	volume of a pyramid	$\frac{1}{3} A h$
curved surface area of a cylinder	$2 \pi r h$	volume of a sphere	$\frac{4}{3} \pi r^{3}$
volume of a cylinder	$\pi r^{2} h$	area of a triangle	$\frac{1}{2} b c \sin (A)$
volume of a cone	$\frac{1}{3} \pi r^{2} h$		

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left((a x+b)^{n}\right)=a n(a x+b)^{n-1}$	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}(x)+c, x>0$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$	$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$	quotient rule
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$	$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$	
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$		
mean $\quad \mu=\mathrm{E}(X)$	variance	$\operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

Sample proportions

$\hat{P}=\frac{X}{n}$	mean	$\mathrm{E}(\hat{P})=p$	
standard deviation	$\operatorname{sd}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

