
\square

MATHEMATICAL METHODS
 Written examination 1

Friday 31 May 2019
Reading time: 2.00 pm to 2.15 pm ($\mathbf{1 5}$ minutes)
Writing time: 2.15 pm to 3.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 12 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

> Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (4 marks)
a. Let $y=\frac{2 e^{2 x}-1}{e^{x}}$.

Find $\frac{d y}{d x}$. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Let $f(x)=x^{2} \cos (3 x)$.

Find $f^{\prime}\left(\frac{\pi}{3}\right)$. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 (2 marks)

Find $f(x)$ given that $f(1)=-\frac{7}{4}$ and $f^{\prime}(x)=2 x^{2}-\frac{1}{4} x^{-\frac{2}{3}}$.
\qquad
\qquad
\qquad

Question 3 (4 marks)
a. Evaluate $\int_{2}^{7} \frac{1}{x+\sqrt{3}} d x$ and $\int_{2}^{7} \frac{1}{x-\sqrt{3}} d x$.
\qquad
b. Show that $\frac{1}{2}\left(\frac{1}{x-\sqrt{3}}+\frac{1}{x+\sqrt{3}}\right)=\frac{x}{x^{2}-3}$.
\qquad
\qquad
\qquad
\qquad
c. Use your answers to part a. and part b. to evaluate $\int_{2}^{7} \frac{x}{x^{2}-3} d x$ in the form $\frac{1}{a} \log _{e}(b)$,
where a and b are positive integers.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (8 marks)

A function g has rule $g(x)=\log _{e}(x-3)+2$.
a. State the maximal domain of g and the range of g over its maximal domain.
b. i. Find the equation of the tangent to the graph of g at $(4,2)$.
\qquad
\qquad
\qquad
\qquad
\qquad
ii. On the axes on page 7, sketch the graph of the function g, labelling any asymptote with its equation. Also draw the tangent to the graph of g at $(4,2)$.

Question 5 (5 marks)

Let $h:\left[-\frac{3}{2}, \infty\right) \rightarrow R, h(x)=\sqrt{2 x+3}-2$.
a. Find the value(s) of x such that $[h(x)]^{2}=1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Find the domain and the rule of the inverse function h^{-1}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 (4 marks)
Jacinta tosses a coin five times.
a. Assuming that the coin is fair and given that Jacinta observes a head on the first two tosses, find the probability that she observes a total of either four or five heads.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Albin suspects that the coin Jacinta tossed is not actually a fair coin and he tosses it 18 times. Albin observes a total of 12 heads from the 18 tosses.

Based on this sample, find the approximate 90% confidence interval for the probability of observing a head when this coin is tossed. Use the z value $\frac{33}{20}$.

2 marks

Question 7 (8 marks)

The shaded region in the diagram below is bounded by the vertical axis, the graph of the function with rule $f(x)=\sin (\pi x)$ and the horizontal line segment that meets the graph at $x=a$, where $1 \leq a \leq \frac{3}{2}$.

a. Show that $A(a)=\frac{1}{\pi}-\frac{1}{\pi} \cos (a \pi)-a \sin (a \pi)$. 3 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Determine the range of values of $A(a)$.
\qquad
\qquad
\qquad
\qquad
c. i. Express in terms of $A(a)$, for a specific value of a, the area bounded by the vertical axis, the graph of $y=2\left(\sin (\pi x)+\frac{\sqrt{3}}{2}\right)$ and the horizontal axis. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
ii. Hence, or otherwise, find the area described in part c.i.

1 mark

Question 8 (5 marks)

A fair standard die is rolled 50 times. Let W be a random variable with binomial distribution that represents the number of times the face with a six on it appears uppermost.
a. Write down the expression for $\operatorname{Pr}(W=k)$, where $k \in\{0,1,2, \ldots, 50\}$.
\qquad
\qquad
\qquad
b. Show that $\frac{\operatorname{Pr}(W=k+1)}{\operatorname{Pr}(W=k)}=\frac{(50-k)}{5(k+1)}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Hence, or otherwise, find the value of k for which $\operatorname{Pr}(W=k)$ is the greatest.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Victorian Certificate of Education 2019

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$	volume of a pyramid	$\frac{1}{3} A h$
curved surface area of a cylinder	$2 \pi r h$	volume of a sphere	$\frac{4}{3} \pi r^{3}$
volume of a cylinder	$\pi r^{2} h$	area of a triangle	$\frac{1}{2} b c \sin (A)$
volume of a cone	$\frac{1}{3} \pi r^{2} h$		

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left((a x+b)^{n}\right)=a n(a x+b)^{n-1}$	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}(x)+c, x>0$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$	$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$	quotient rule
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$	$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$	
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$		
mean $\quad \mu=\mathrm{E}(X)$	variance	$\operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

Sample proportions

$\hat{P}=\frac{X}{n}$	mean	$\mathrm{E}(\hat{P})=p$	
standard deviation	$\operatorname{sd}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

