Victorian Certificate of Education

\square
\square
\square

SPECIALIST MATHEMATICS
 Written examination 1

Thursday 19 November 2020

Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book		
Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 10 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
Unless otherwise specified, an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~ms}^{-2}$, where $g=9.8$

Question 1 (5 marks)

A 2 kg mass is initially at rest on a smooth horizontal surface. The mass is then acted on by two constant forces that cause the mass to move horizontally. One force has magnitude 10 N and acts in a direction 60° upwards from the horizontal, and the other force has magnitude 5 N and acts in a direction 30° upwards from the horizontal, as shown in the diagram below.

a. Find the normal reaction force, in newtons, that the surface exerts on the mass.
\qquad
\qquad
\qquad
b. Find the acceleration of the mass, in ms^{-2}, after it begins to move.
\qquad
\qquad
\qquad
c. Find how far the mass travels, in metres, during the first four seconds of motion.
\qquad
\qquad
\qquad
\qquad

Question 2 (4 marks)
Evaluate $\int_{-1}^{0} \frac{1+x}{\sqrt{1-x}} d x$. Give your answer in the form $a \sqrt{b}+c$, where $a, b, c \in R$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (3 marks)
Find the cube roots of $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i$. Express your answers in polar form using principal values of the
argument.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (4 marks)
Solve the inequality $3-x>\frac{1}{|x-4|}$ for x, expressing your answer in interval notation.
\qquad

Question 5 (4 marks)
Let $\underset{\sim}{\mathrm{a}}=2 \underset{\sim}{\mathrm{i}}-3 \underset{\sim}{\mathrm{j}}+\underset{\sim}{\mathrm{k}}$ and $\underset{\sim}{\mathrm{b}}=\underset{\sim}{\mathrm{i}}+m \underset{\sim}{\mathrm{j}}-\underset{\sim}{\mathrm{k}}$, where m is an integer.
The vector resolute of $\underset{\sim}{\mathrm{a}}$ in the direction of $\underset{\sim}{\mathrm{b}}$ is $-\frac{11}{18}(\underset{\sim}{\mathrm{i}}+m \underset{\sim}{\mathrm{j}}-\underset{\sim}{\mathrm{k}})$.
a. Find the value of m.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Find the component of $\underset{\sim}{a}$ that is perpendicular to $\underset{\sim}{b}$.
\qquad
\qquad
\qquad

Question 6 (5 marks)
Let $f(x)=\arctan (3 x-6)+\pi$.
a. Show that $f^{\prime}(x)=\frac{3}{9 x^{2}-36 x+37}$.
\qquad
\qquad
\qquad
b. Hence, show that the graph of f has a point of inflection at $x=2$.
\qquad
\qquad
\qquad
\qquad
\qquad
c. Sketch the graph of $y=f(x)$ on the axes provided below. Label any asymptotes with their equations and the point of inflection with its coordinates.

Question 7 (5 marks)

Consider the function defined by

$$
f(x)= \begin{cases}m x+n, & x<1 \\ \frac{4}{1+x^{2}}, & x \geq 1\end{cases}
$$

where m and n are real numbers.
a. Given that $f(x)$ and $f^{\prime}(x)$ are continuous over R, show that $m=-2$ and $n=4$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Find the area enclosed by the graph of the function, the x-axis and the lines $x=0$ and $x=\sqrt{3}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 8 (5 marks)

Find the volume, V, of the solid of revolution formed when the graph of $y=2 \sqrt{\frac{x^{2}+x+1}{(x+1)\left(x^{2}+1\right)}}$ is rotated about the x-axis over the interval $[0, \sqrt{3}]$. Give your answer in the form $V=2 \pi\left(\log _{e}(a)+b\right)$, where $a, b \in R$.
\qquad

Question 9 (5 marks)

Consider the curve defined parametrically by

$$
\begin{aligned}
& x=\arcsin (t) \\
& y=\log _{e}(1+t)+\frac{1}{4} \log _{e}(1-t)
\end{aligned}
$$

where $t \in[0,1)$.
a. $\left(\frac{d y}{d t}\right)^{2}$ can be written in the form $\frac{1}{a(1+t)^{2}}+\frac{1}{b\left(1-t^{2}\right)}+\frac{1}{c(1-t)^{2}}$, where a, b and c are real numbers.

Show that $a=1, b=-2$ and $c=16$.
\qquad
\qquad
\qquad
\qquad
b. Find the arc length, s, of the curve from $t=0$ to $t=\frac{1}{2}$. Give your answer in the form $s=\log _{e}(m)+n \log _{e}(p)$, where $m, n, p \in Q$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Victorian Certificate of Education 2020

SPECIALIST MATHEMATICS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Specialist Mathematics formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$
curved surface area of a cylinder	$2 \pi r h$
volume of a cylinder	$\pi r^{2} h$
volume of a cone	$\frac{1}{3} \pi r^{2} h$
volume of a pyramid	$\frac{1}{3} A h$
volume of a sphere	$\frac{4}{3} \pi r^{3}$
area of a triangle	$\frac{1}{2} b c \sin (A)$
sine rule	$\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
cosine rule	$c^{2}=a^{2}+b^{2}-2 a b \cos (C)$

Circular functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$	
$1+\tan ^{2}(x)=\sec ^{2}(x)$	$\cot ^{2}(x)+1=\operatorname{cosec}^{2}(x)$
$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$	$\cos (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$	$\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$	
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$	
$\sin (2 x)=2 \sin (x) \cos (x)$	$\tan (2 x)=\frac{2 \tan (x)}{1-\tan (x)}$

Circular functions - continued

Function	$\sin ^{-1}$ or \arcsin	$\cos ^{-1}$ or \arccos	$\tan ^{-1}$ or arctan
Domain	$[-1,1]$	$[-1,1]$	R
Range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (complex numbers)

$z=x+i y=r(\cos (\theta)+i \sin (\theta))=r \operatorname{cis}(\theta)$	
$\|z\|=\sqrt{x^{2}+y^{2}}=r$	$-\pi<\operatorname{Arg}(z) \leq \pi$
$z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$	$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$
$z^{n}=r^{n} \operatorname{cis}(n \theta)($ de Moivre's theorem $)$	

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}\|x\|+c$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$	$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$	$\int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$	$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$	$\int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$	$\int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c$
	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
	$\int(a x+b)^{-1} d x=\frac{1}{a} \log _{e}\|a x+b\|+c$
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule	$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$
Euler's method	If $\frac{d y}{d x}=f(x), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h f\left(x_{n}\right)$
acceleration	$a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$
arc length	$\int_{x_{1}}^{x_{2}} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \text { or } \int_{t_{1}}^{t_{2}} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$

Vectors in two and three dimensions

$\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+\underset{\sim}{\mathrm{k}}$
$\|\underset{\sim}{\mathrm{r}}\|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{\underset{\sim}{\mathrm{r}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \underset{\sim}{\mathrm{i}}+\frac{d y}{d t} \mathrm{j}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$
${\underset{\sim}{r}}_{1} \cdot \sim_{\sim}^{r} 2=r_{1} r_{2} \cos (\theta)=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$

Mechanics

momentum	$\underset{\sim}{p}=m \underset{\sim}{v}$
equation of motion	$\underset{\sim}{\mathrm{p}}=m \underset{\sim}{\mathrm{a}}$

