MATHEMATICAL METHODS
 Written examination 1

Friday 28 May 2021
Reading time: 2.00 pm to 2.15 pm (15 minutes)
Writing time: 2.15 pm to 3.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 14 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (4 marks)
a. Find the derivative of $\frac{e^{2 x}}{2 x+1}$. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Let $f: R \rightarrow R, f(x)=\sin ^{4}(2 x)$.

Evaluate $f^{\prime}\left(\frac{\pi}{4}\right)$. 2 marks
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 (4 marks)
Let $h: R^{+} \rightarrow R, h(x)=x^{3} \log _{e}(2 x)$.
a. Show that $h^{\prime}(x)=3 x^{2} \log _{e}(2 x)+x^{2}$. 1 mark
\qquad
\qquad
\qquad
b. Let $\frac{d y}{d x}=3 x^{2} \log _{e}(2 x)$. The graph of y passes through the point $\left(\frac{1}{2},-\frac{25}{24}\right)$. Find the rule of y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (4 marks)
Steffi is raising money for her school with a lucky dip game.
In this game, 100 identical cubes, numbered 1 to 100 , are placed in a large container. The container is then thoroughly shaken.
A player pays $\$ 2$ and is blindfolded so they cannot see. The player then selects a cube at random. If the number on the selected cube is a multiple of 10 (that is, $10,20,30, \ldots, 100$), the player wins a cash prize of $\$ 7$.
The cube is then returned to the container, which is thoroughly shaken again, before the next player makes a random selection. Each selection is independent of previous selections.
a. Find the probability that a player will win a cash prize of $\$ 7$.
b. What is the expected loss to a player per game?
\qquad
\qquad
\qquad
\qquad
\qquad
c. $\quad \hat{P}$ is the random variable that represents the proportion of games won by a player in random samples of three games played.

Find $\operatorname{Pr}\left(\hat{P}=\frac{2}{3}\right)$.
1 mark
\qquad
\qquad
\qquad

Question 4 (5 marks)
Let $f: R \rightarrow R, f(x)=2 e^{x}+1$ and let $g:(-2, \infty) \rightarrow R, g(x)=\log _{e}(x+2)$.
a. i. Find $f(g(x))$ in the form $a x+b$, where $a, b \in R$.
ii. State the range of $f(g(x))$.
b. Let $T: R^{2} \rightarrow R^{2}, T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right]$ and let the graph of the function h be the transformation of the graph of the function g under T. If $h=f^{-1}$, then find the values of c and d. 3 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 (5 marks)

Part of the graph of $f:(-\infty,-1) \cup(2, \infty) \rightarrow R, f(x)=-2 \sin (\pi x)+1$ is shown below.

Let $g:[-1,2] \rightarrow R, g(x)=-2 \sin (\pi x)+1$.
a. Sketch the graph of g on the axes provided above.
b. Find the solutions to $g(x)=0$.

2 marks
\qquad
\qquad
\qquad
\qquad
\qquad
c. Find the area of the region bounded by the graph of g and the x-axis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 (3 marks)
Let A and B be events for a sample space such that $\operatorname{Pr}(A)=\frac{2}{3}, \operatorname{Pr}(B \mid A)=\frac{2}{5}$ and $\operatorname{Pr}\left(B \mid A^{\prime}\right)=\frac{1}{4}$.
a. Find $\operatorname{Pr}(B)$.

2 marks
b. Find $\operatorname{Pr}\left(A^{\prime} \cup B^{\prime}\right)$. 1 mark

Question 7 (5 marks)

Let $q:[0,4] \rightarrow R, q(x)=x(4-x)$.
A rectangle $A B C D$ is inscribed between the graph of the function q and the x-axis. Its vertices are a units, where $a>0$, from the axis of symmetry, $x=2$, as shown below.

a. Find the value of a when the rectangle is a square. Give your answer in the form $b+\sqrt{c}$, where b is an integer and c is a positive integer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Find the maximum area of the rectangle $A B C D$. Give your answer in the form $\frac{m \sqrt{n}}{p}$,
where m, n and p are positive integers.

3 marks

Question 8 (7 marks)

The graph of $f:[0,4] \rightarrow R, f(x)=x(2-\sqrt{x})$ and part of the graph of $g:[0, \infty) \rightarrow R, g(x)=2 x$ are shown below.

a. Find $f^{\prime}(x)$.
\qquad
\qquad
\qquad
b. The tangent to the graph of f at the point $B(b, f(b))$ is perpendicular to the graph of g.

Find the coordinates of B.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Show that the graphs of f and g intersect only at the origin.
\qquad
\qquad
\qquad
\qquad
d. Let $Q(q, 2 q)$, where $q>0$, be a point on the graph of g.

The tangent to the graph of f at the point $D(d, f(d))$ passes through Q, as shown below.

It can be shown that $d=3 q$.
Determine the values of q for which the tangent to the graph of f passes through Q and has an x-axis intercept greater than 4 .
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9 (3 marks)

A differentiable function $f: R \rightarrow R$ has the following two properties:

- $f^{\prime}(x)=f(x)(4-f(x))$
- The range of f is $(0,4)$.
a. Find $f^{\prime}(0)$ if $f(0)=1$.
\qquad
\qquad
\qquad
b. Determine, with appropriate justification, the number of stationary points of the graph of f.
\qquad
\qquad
\qquad
\qquad
c. \quad State the range of f^{\prime}.
\qquad
\qquad
\qquad
\qquad
\qquad
\square

Victorian Certificate of Education 2021

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$	volume of a pyramid	$\frac{1}{3} A h$
curved surface area of a cylinder	$2 \pi r h$	volume of a sphere	$\frac{4}{3} \pi r^{3}$
volume of a cylinder	$\pi r^{2} h$	area of a triangle	$\frac{1}{2} b c \sin (A)$
volume of a cone	$\frac{1}{3} \pi r^{2} h$		

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left((a x+b)^{n}\right)=a n(a x+b)^{n-1}$	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}(x)+c, x>0$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$	$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$	quotient rule
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$	$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$	
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$		
mean $\quad \mu=\mathrm{E}(X)$	variance	$\operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

Sample proportions

$\hat{P}=\frac{X}{n}$	mean	$\mathrm{E}(\hat{P})=p$	
standard deviation	$\operatorname{sd}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

