

MATHEMATICAL METHODS Written examination 2

Thursday 2 November 2023
Reading time: 11.45 am to $\mathbf{1 2 . 0 0}$ noon ($\mathbf{1 5}$ minutes)
Writing time: 12.00 noon to 2.00 pm (2 hours)

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	20	20	20
B	5	5	60

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set squares, aids for curve sketching, one bound reference, one approved technology (calculator or software) and, if desired, one scientific calculator. Calculator memory DOES NOT need to be cleared. For approved computer-based CAS, full functionality may be used.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 23 pages
- Formula sheet
- Answer sheet for multiple-choice questions

Instructions

- Write your student number in the space provided above on this page.
- Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

SECTION A－Multiple－choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple－choice questions．
Choose the response that is correct for the question．
A correct answer scores 1 ；an incorrect answer scores 0 ．
Marks will not be deducted for incorrect answers．
No marks will be given if more than one answer is completed for any question．
Unless otherwise indicated，the diagrams in this book are not drawn to scale．

Question 1

The amplitude，A ，and the period，P ，of the function $f(x)=-\frac{1}{2} \sin (3 x+2 \pi)$ are
A．$A=-\frac{1}{2}, P=\frac{\pi}{3}$
B．$\quad A=-\frac{1}{2}, P=\frac{2 \pi}{3}$
C．$A=-\frac{1}{2}, P=\frac{3 \pi}{2}$
D．$\quad A=\frac{1}{2}, P=\frac{\pi}{3}$
E．$\quad A=\frac{1}{2}, P=\frac{2 \pi}{3}$

Question 2

For the parabola with equation $y=a x^{2}+2 b x+c$ ，where $a, b, c \in R$ ，the equation of the axis of symmetry is
A．$x=-\frac{b}{a}$
B．$x=-\frac{b}{2 a}$
C．$y=c$
D．$x=\frac{b}{a}$
E．$x=\frac{b}{2 a}$

Question 3

Two functions, p and q, are continuous over their domains, which are $[-2,3)$ and $(-1,5]$, respectively.
The domain of the sum function $p+q$ is
A. $[-2,5]$
B. $[-2,-1) \cup(3,5]$
C. $[-2,-1) \cup(-1,3) \cup(3,5]$
D. $[-1,3]$
E. $(-1,3)$

Question 4

Consider the system of simultaneous linear equations below containing the parameter k.

$$
\begin{aligned}
k x+5 y & =k+5 \\
4 x+(k+1) y & =0
\end{aligned}
$$

The value(s) of k for which the system of equations has infinite solutions are
A. $k \in\{-5,4\}$
B. $k \in\{-5\}$
C. $k \in\{4\}$
D. $k \in R \backslash\{-5,4\}$
E. $k \in R \backslash\{-5\}$

Question 5

Which one of the following functions has a horizontal tangent at $(0,0)$?
A. $y=x^{-\frac{1}{3}}$
B. $y=x^{\frac{1}{3}}$
C. $y=x^{\frac{2}{3}}$
D. $y=x^{\frac{4}{3}}$
E. $y=x^{\frac{3}{4}}$

Question 6

Suppose that $\int_{3}^{10} f(x) d x=C$ and $\int_{7}^{10} f(x) d x=D$. The value of $\int_{7}^{3} f(x) d x$ is
A. $C+D$
B. $C+D-3$
C. $C-D$
D. $D-C$
E. $C D-3$

Question 7

Let $f(x)=\log _{e} x$, where $x>0$ and $g(x)=\sqrt{1-x}$, where $x<1$.
The domain of the derivative of $(f \circ g)(x)$ is
A. $x \in R$
B. $x \in(-\infty, 1]$
C. $x \in(-\infty, 1)$
D. $x \in(0, \infty)$
E. $x \in(0,1)$

Question 8

A box contains n green balls and m red balls. A ball is selected at random, and its colour is noted. The ball is then replaced in the box.
In 8 such selections, where $n \neq m$, what is the probability that a green ball is selected at least once?
A. $8\left(\frac{n}{n+m}\right)\left(\frac{m}{n+m}\right)^{7}$
B. $1-\left(\frac{n}{n+m}\right)^{8}$
C. $1-\left(\frac{m}{n+m}\right)^{8}$
D. $1-\left(\frac{n}{n+m}\right)\left(\frac{m}{n+m}\right)^{7}$
E. $\quad 1-8\left(\frac{n}{n+m}\right)\left(\frac{m}{n+m}\right)^{7}$

Question 9

The function f is given by

$$
f(x)= \begin{cases}\tan \left(\frac{x}{2}\right) & 4 \leq x<2 \pi \\ \sin (a x) & 2 \pi \leq x \leq 8\end{cases}
$$

The value of a for which f is continuous and smooth at $x=2 \pi$ is
A. -2
B. $-\frac{\pi}{2}$
C. $-\frac{1}{2}$
D. $\frac{1}{2}$
E. 2

Question 10

A continuous random variable X has the following probability density function.

$$
g(x)=\left\{\begin{array}{cc}
\frac{x-1}{20} & 1 \leq x<6 \\
\frac{9-x}{12} & 6 \leq x \leq 9 \\
0 & \text { elsewhere }
\end{array}\right.
$$

The value of k such that $\operatorname{Pr}(X<k)=0.35$ is
A. $\sqrt{14}-1$
B. $\sqrt{14}+1$
C. $\sqrt{15}-1$
D. $\sqrt{15}+1$
E. $1-\sqrt{15}$

Question 11

Two functions, f and g, are continuous and differentiable for all $x \in R$. It is given that $f(-2)=-7, g(-2)=8$ and $f^{\prime}(-2)=3, g^{\prime}(-2)=2$.
The gradient of the graph $y=f(x) \times g(x)$ at the point where $x=-2$ is
A. -10
B. -6
C. 0
D. 6
E. 10

Question 12

The probability mass function for the discrete random variable X is shown below.

X	-1	0	1	2
$\operatorname{Pr}(X=x)$	k^{2}	$3 k$	k	$-k^{2}-4 k+1$

The maximum possible value for the mean of X is:
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. 1
E. 2

Question 13

The following algorithm applies Newton's method using a For loop with 3 iterations.

```
Inputs: f(x), a function of x
    df(x), the derivative of f(x)
    x0, an initial estimate
```

Define newton (f(x), df(x), $x 0$)
For i from 1 to 3
If $d f(x 0)=0$ Then
Return "Error: Division by zero"
Else
$x 0 \leftarrow x 0-f(x 0) \div d f(x 0)$

EndFor

Return x 0
The Return value of the function newton $\left(x^{3}+3 x-3,3 x^{2}+3,1\right)$ is closest to
A. 0.83333
B. 0.81785
C. 0.81773
D. 1
E. 3

Question 14

A polynomial has the equation $y=x(3 x-1)(x+3)(x+1)$.
The number of tangents to this curve that pass through the positive x-intercept is
A. 0
B. 1
C. 2
D. 3
E. 4

Question 15

Let X be a normal random variable with mean of 100 and standard deviation of 20. Let Y be a normal random variable with mean of 80 and standard deviation of 10 .

- Which of the diagrams below best represents the probability density functions for X and Y, plotted on the same set of axes?
A.

B.

C.

D.

E.

Question 16

Let $f(x)=e^{x-1}$.
Given that the product function $f(x) \times g(x)=e^{(x-1)^{2}}$, the rule for the function g is
A. $g(x)=e^{x-1}$
B. $g(x)=e^{(x-2)(x-1)}$
C. $g(x)=e^{(x+2)(x-1)}$
D. $g(x)=e^{x(x-2)}$
E. $g(x)=e^{x(x-3)}$

Question 17

A cylinder of height h and radius r is formed from a thin rectangular sheet of metal of length x and width y, by cutting along the dashed lines shown below.
D. $\frac{\pi x y-2 y^{2}}{2 \pi}$
E. $\frac{2 y^{2}-\pi x y}{2 \pi}$

Question 18

Consider the function $f:[-a \pi, a \pi] \rightarrow R, f(x)=\sin (a x)$, where a is a positive integer.
The number of local minima in the graph of $y=f(x)$ is always equal to
A. 2
B. 4
C. a
D. $2 a$
E. a^{2}

Question 19

Find all values of k, such that the equation $x^{2}+(4 k+3) x+4 k^{2}-\frac{9}{4}=0$ has two real solutions for x, one positive and
one negative. one negative.
A. $k>-\frac{3}{4}$
B. $k \geq-\frac{3}{4}$
C. $k>\frac{3}{4}$
D. $-\frac{3}{4}<k<\frac{3}{4}$
E. $k<-\frac{3}{4}$ or $k>\frac{3}{4}$

Question 20

Let $f(x)=\log _{e}\left(x+\frac{1}{\sqrt{2}}\right)$.
Let $g(x)=\sin (x)$ where $x \in(-\infty, 5)$.
The largest interval of x values for which $(f \circ g)(x)$ and $(g \circ f)(x)$ both exist is
A. $\left(-\frac{1}{\sqrt{2}}, \frac{5 \pi}{4}\right)$
B. $\left[-\frac{1}{\sqrt{2}}, \frac{5 \pi}{4}\right)$
C. $\left(-\frac{\pi}{4}, \frac{5 \pi}{4}\right)$
D. $\left[-\frac{\pi}{4}, \frac{5 \pi}{4}\right]$
E. $\left[-\frac{\pi}{4},-\frac{1}{\sqrt{2}}\right]$

SECTION B

Instructions for Section B

Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given unless otherwise specified.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (11 marks)
Let $f: R \rightarrow R, f(x)=x(x-2)(x+1)$. Part of the graph of f is shown below.

a. State the coordinates of all axial intercepts of f.

1 mark
b. Find the coordinates of the stationary points of f.
\qquad
\qquad
\qquad
c. \quad i. Let $g: R \rightarrow R, g(x)=x-2$.

Find the values of x for which $f(x)=g(x)$.
\qquad
\qquad
\qquad
ii. Write down an expression using definite integrals that gives the area of the regions bound by f and g.
iii. Hence, find the total area of the regions bound by f and g, correct to two decimal places.

1 mark
\qquad
\qquad
d. Let $h: R \rightarrow R, h(x)=(x-a)(x-b)^{2}$, where $h(x)=f(x)+k$ and $a, b, k \in R$.

Find the possible values of a and b.

Question 2 (11 marks)

The following diagram represents an observation wheel, with its centre at point P. Passengers are seated in pods, which are carried around as the wheel turns. The wheel moves anticlockwise with constant speed and completes one full rotation every 30 minutes. When a pod is at the lowest point of the wheel (point A), it is 15 metres above the ground. The wheel has a radius of 60 metres.

Consider the function $h(t)=-60 \cos (b t)+c$ for some $b, c \in R$, which models the height above the ground of a pod originally situated at point A, after time t minutes.
a. Show that $b=\frac{\pi}{15}$ and $c=75$.
b. Find the average height of a pod on the wheel as it travels from point A to point B.

Give your answer in metres, correct to two decimal places.
\qquad
\qquad
\qquad
c. Find the average rate of change, in metres per minute, of the height of a pod on the wheel as it travels from point A to point B.

After 15 minutes, the wheel stops moving and remains stationary for 5 minutes. After this, it continues moving at double its previous speed for another 7.5 minutes.
The height above the ground of a pod that was initially at point A, after t minutes, can be modelled by the piecewise function w :

$$
w(t)=\left\{\begin{array}{cl}
h(t) & 0 \leq t<15 \\
k & 15 \leq t<20 \\
h(m t+n) & 20 \leq t \leq 27.5
\end{array}\right.
$$

where $k \geq 0, m \geq 0$ and $n \in R$.
d. \quad i. \quad State the values of k and m.
\qquad
\qquad
ii. Find all possible values of n.
\qquad
\qquad
\qquad
iii. Sketch the graph of the piecewise function w on the axes below, showing the coordinates of the endpoints.

3 marks

Question 3 (12 marks)
Consider the function $g: R \rightarrow R, g(x)=2^{x}+5$.
a. State the value of $\lim _{x \rightarrow-\infty} g(x)$.
\qquad
b. The derivative, $g^{\prime}(x)$, can be expressed in the form $g^{\prime}(x)=k \times 2^{x}$.

Find the real number k.
1 mark
\qquad
\qquad
c. i. Let a be a real number. Find, in terms of a, the equation of the tangent to g at the point $(a, g(a))$. 1 mark

Let $h: R \rightarrow R, h(x)=2^{x}-x^{2}$.
d. Find the coordinates of the point of inflection for h, correct to two decimal places.
e. Find the largest interval of x values for which h is strictly decreasing.

Give your answer correct to two decimal places.
1 mark
\qquad
f. Apply Newton's method, with an initial estimate of $x_{0}=0$, to find an approximate x-intercept of h. Write the estimates x_{1}, x_{2} and x_{3} in the table below, correct to three decimal places.

x_{0}	0
x_{1}	
x_{2}	
x_{3}	

g. For the function h, explain why a solution to the equation $\log _{e}(2) \times\left(2^{x}\right)-2 x=0$ should not be used as an initial estimate x_{0} in Newton's method.
\qquad
\qquad
\qquad
h. There is a positive real number n for which the function $f(x)=n^{x}-x^{n}$ has a local minimum on the x-axis.

Find this value of n.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (15 marks)
A manufacturer produces tennis balls.
The diameter of the tennis balls is a normally distributed random variable D, which has a mean of 6.7 cm and a standard deviation of 0.1 cm .
a. Find $\operatorname{Pr}(D>6.8)$, correct to four decimal places.
\qquad
b. Find the minimum diameter of a tennis ball that is larger than 90% of all tennis balls produced.

Give your answer in centimetres, correct to two decimal places.
\qquad
\qquad
Tennis balls are packed and sold in cylindrical containers. A tennis ball can fit through the opening at the top of the container if its diameter is smaller than 6.95 cm .
c. Find the probability that a randomly selected tennis ball can fit through the opening at the top of the container.
Give your answer correct to four decimal places.
\qquad
\qquad
d. In a random selection of 4 tennis balls, find the probability that at least 3 balls can fit through the opening at the top of the container.
Give your answer correct to four decimal places.
\qquad

A tennis ball is classed as grade A if its diameter is between 6.54 cm and 6.86 cm , otherwise it is classed as grade B.
e. Given that a tennis ball can fit through the opening at the top of the container, find the probability that it is classed as grade A.
Give your answer correct to four decimal places.
\qquad
\qquad
\qquad
f. The manufacturer would like to improve processes to ensure that more than 99% of all tennis balls produced are classed as grade A.

Assuming that the mean diameter of the tennis balls remains the same, find the required standard deviation of the diameter, in centimetres, correct to two decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad
g. An inspector takes a random sample of 32 tennis balls from the manufacturer and determines a confidence interval for the population proportion of grade A balls produced.
The confidence interval is $(0.7382,0.9493)$, correct to 4 decimal places.
Find the level of confidence that the population proportion of grade A balls is within the interval, as a percentage correct to the nearest integer.

A tennis coach uses both grade A and grade B balls. The serving speed, in metres per second, of a grade A ball is a continuous random variable, V, with the probability density function

$$
f(v)=\left\{\begin{array}{cl}
\frac{1}{6 \pi} \sin \left(\sqrt{\frac{v-30}{3}}\right) & 30 \leq v \leq 3 \pi^{2}+30 \\
0 & \text { elsewhere }
\end{array}\right.
$$

h. Find the probability that the serving speed of a grade A ball exceeds 50 metres per second.

Give your answer correct to four decimal places.
\qquad
\qquad
i. Find the exact mean serving speed for grade A balls, in metres per second.
\qquad
\qquad
\qquad

The serving speed of a grade B ball is given by a continuous random variable, W, with the probability density function $g(w)$.

A transformation maps the graph of f to the graph of g, where $g(w)=a f\left(\frac{w}{b}\right)$.
j. If the mean serving speed for a grade B ball is $2 \pi^{2}+8$ metres per second, find the values of a and b.

Question 5 (11 marks)
Let $f: R \rightarrow R, f(x)=e^{x}+e^{-x}$ and $g: R \rightarrow R, g(x)=\frac{1}{2} f(2-x)$.
a. Complete a possible sequence of transformations to map f to g.

- Dilation of factor $\frac{1}{2}$ from the x axis.
- \qquad
-

Two functions g_{1} and g_{2} are created, both with the same rule as g but with distinct domains, such that g_{1} is strictly increasing and g_{2} is strictly decreasing.
b. Give the domain and range for the inverse of g_{1}.
\qquad
\qquad
\qquad

Shown below is the graph of g, the inverses of g_{1} and g_{2}, and the line $y=x$.

The intersection points between the graphs of $y=x, y=g(x)$ and the inverses of g_{1} and g_{2}, are labelled P and Q.
c. i. Find the coordinates of P and Q, correct to two decimal places. 1 mark
\qquad
\qquad
ii. Find the area of the region bound by the graphs of g, the inverse of g_{1} and the inverse of g_{2}.

Give your answer correct to two decimal places.
\qquad
\qquad
\qquad
\qquad

Let $h: R \rightarrow R, h(x)=\frac{1}{k} f(k-x)$, where $k \in(0, \infty)$.
d. The turning point of h always lies on the graph of the function $y=2 x^{n}$, where n is an integer.

Find the value of n.
\qquad
\qquad

Let $h_{1}:[k, \infty) \rightarrow R, h_{1}(x)=h(x)$.
The rule for the inverse of h_{1} is $y=\log _{e}\left(\frac{k}{2} x+\frac{1}{2} \sqrt{k^{2} x^{2}-4}\right)+k$
e. What is the smallest value of k such that h will intersect with the inverse of h_{1} ?

Give your answer correct to two decimal places.
\qquad
\qquad
\qquad

It is possible for the graphs of h and the inverse of h_{1} to intersect twice. This occurs when $k=5$.
f. Find the area of the region bound by the graphs of h and the inverse of h_{1}, when $k=5$.

Give your answer correct to two decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad

Victorian Certificate of Education 2023

MATHEMATICAL METHODS

Written examination 2

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$	volume of a pyramid	$\frac{1}{3} A h$
curved surface area of a cylinder	$2 \pi r h$	volume of a sphere	$\frac{4}{3} \pi r^{3}$
volume of a cylinder	$\pi r^{2} h$	area of a triangle	$\frac{1}{2} b c \sin (A)$
volume of a cone	$\frac{1}{3} \pi r^{2} h$		

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$		$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$	
$\frac{d}{d x}\left((a x+b)^{n}\right)=a n(a x+b)^{n-1}$		$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$	
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$		$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$	
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$		$\int \frac{1}{x} d x=\log _{e}(x)+c, x>0$	
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$		$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$	
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$		$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$	
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$			
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$	quotient rule	$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$	Newton's method	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
trapezium rule approximation	$\text { Area } \approx \frac{x_{n}-x_{0}}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-2}\right)+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$		

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$	$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$	
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$		
mean	$\mu=\mathrm{E}(X)$	variance
binomial coefficient	$\binom{n}{x}=\frac{n!}{x!(n-x)!}$	$\operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
binomial	$\operatorname{Pr}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$	$\mu=n p$	$\sigma^{2}=n p(1-p)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

Sample proportions

$\hat{P}=\frac{X}{n}$	mean	$\mathrm{E}(\hat{P})=p$	
standard deviation	$\operatorname{sd}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

IICTORIA

