

SPECIALIST MATHEMATICS

Written examination 1

Friday 3 November 2023

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of	Number of questions	Number of
questions	to be answered	marks
10	10	

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 11 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

Instructions

Answer **all** questions in the spaces provided. Unless otherwise specified, an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude g m s⁻², where g = 9.8

Question 1 (4 marks)

Consider the function f with rule $f(x) = \frac{x^2 + x - 6}{x - 1}$.

a. Show that the rule for the function *f* can be written as $f(x) = x + 2 - \frac{4}{x-1}$.

1 mark

b. Sketch the graph of f on the axes below, labelling any asymptotes with their equations. 3 marks

O NOT WRITE IN THIS AREA

Question 2 (3 marks) Consider the complex number $z = (b - i)^3$, where $b \in R^+$.

Find b given that $\arg(z) = -\frac{\pi}{2}$.

Question 3 (3 marks)

A particle moves along a straight line. When the particle is x m from a fixed point O, its velocity, v m s⁻¹, is given by

$$v = \frac{3x+2}{2x-1}$$
, where $x \ge 1$.

a. Find the acceleration of the particle, in m s⁻², when x = 2.

b. Find the value that the velocity of the particle approaches as *x* becomes very large.

EA

1 mark

2 marks

5

Question 4 (3 marks)

Consider the relation $x \arcsin(y^2) = \pi$.

Use implicit differentiation to find $\frac{dy}{dx}$ at the point $\left(6, \frac{1}{\sqrt{2}}\right)$.

Give your answer in the form $-\frac{\pi\sqrt{a}}{b}$, where $a, b \in Z^+$.

Question 5 (3 marks) Evaluate $\int_{1}^{2} x^{2} \log_{e}(x) dx$.

Δ

◄

Question 6 (4 marks)

Josie travels from home to work in the city. She drives a car to a train station, waits, and then rides on a train to the city. The time, X_c minutes, taken to drive to the station is normally distributed with a mean of 20 minutes ($\mu_c = 20$) and standard deviation of 6 minutes ($\sigma_c = 6$). The waiting time, X_w minutes, for a train is normally distributed with a mean of 8 minutes ($\mu_w = 8$) and standard deviation of $\sqrt{3}$ minutes ($\sigma_w = \sqrt{3}$). The time, X_t minutes, taken to ride on a train to the city is also normally distributed with a mean of 12 minutes ($\mu_t = 12$) and standard deviation of 5 minutes ($\sigma_t = 5$). The three times are independent of each other.

a. Find the mean and standard deviation of the total time, in minutes, it takes for Josie to travel from home to the city.

2 marks

b. Josie's waiting time for a train on each work day is independent of her waiting time for a train on any other work day. The probability that, for 12 randomly chosen work days, Josie's average waiting time is between 7 minutes 45 seconds and 8 minutes 30 seconds is equivalent to Pr(a < Z < b), where $Z \sim N(0, 1)$ and a and b are real numbers.

Find the values of *a* and *b*.

2 marks

Question 7 (4 marks)

The curve defined by the parametric equations

$$x = \frac{t^2}{4} - 1$$
, $y = \sqrt{3}t$, where $0 \le t \le 2$,

is rotated about the *x*-axis to form an open hollow surface of revolution. Find the surface area of the surface of revolution.

Give your answer in the form $\pi\left(\frac{a\sqrt{b}}{c}-d\right)$, where a, b, c and $d \in Z^+$.

TURN OVER

Question 8 (4 marks)

A function *f* has the rule $f(x) = x e^{2x}$.

Use mathematical induction to prove that $f^{(n)}(x) = (2^n x + n 2^{n-1})e^{2x}$ for $n \in Z^+$, where $f^{(n)}(x)$ represents the *n*th derivative of f(x). That is, f(x) has been differentiated *n* times.

Write down the coordinates of point <i>D</i> .	1 m
Show that \overrightarrow{AB} and \overrightarrow{AD} are $-2i - 5j + 6k$ and $-i - j + 2k$, respect	ively. 1 m
Hence find the equation of the plane in Cartesian form.	2 ma
Find <i>a</i> .	 1 m
$\overline{(D)}$ and $\overline{(D)}$ are a discussively of a normalization of the same $\overline{(D)}$	f this manufal a super

Question 9 (6 marks)

TURN OVER

9

Δ

Question 10 (6 marks)

The position vector of a particle at time *t* seconds is given by

$$\underline{\mathbf{r}}(t) = \left(5 - 6\sin^2(t)\right)\underline{\mathbf{i}} + \left(1 + 6\sin(t)\cos(t)\right)\underline{\mathbf{j}}, \text{ where } t \ge 0$$

a. Write $5 - 6\sin^2(t)$ in the form $\alpha + \beta \cos(2t)$, where $\alpha, \beta \in Z^+$.

b. Show that the Cartesian equation of the path of the particle is $(x - 2)^2 + (y - 1)^2 = 9$. 2 marks

c. The particle is at point A when t = 0 and at point B when t = a, where a is a positive real constant.

If the distance travelled along the curve from *A* to *B* is $\frac{3\pi}{4}$, find *a*.

1 mark

1 mark

Find all values of t for which the position vector of the particle, $\mathbf{r}(t)$, is perpendicular to its velocity vector, $\mathbf{\dot{r}}(t)$.	2 mark
	_
	_
	_
	_
	_
	_
	_

END OF QUESTION AND ANSWER BOOK

11

Victorian Certificate of Education 2023

SPECIALIST MATHEMATICS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference. A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mensuration

area of a circle segment	$\frac{r^2}{2} (\theta - \sin(\theta))$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2h$	sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
volume of a pyramid	$\frac{1}{3}Ah$	cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Algebra, number and structure (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\cos(\theta)$	$\left z\right = \sqrt{x^2 + y^2} =$	= <i>r</i>
$-\pi < \operatorname{Arg}(z) \le \pi$	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta$	$\theta_1 + \theta_2 \Big)$
$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$	de Moivre's theorem	$z^n = r^n \operatorname{cis}(n\theta)$

Data analysis, probability and statistics

for independent	$E(aX_1 + b) =$ $E(a_1X_1 + a_2X_1) =$ $= a_1E(X_1) + c_2$	$a \operatorname{E}(X_{1}) + b$ $Y_{2} + \dots + a_{n}X_{n}$ $u_{2}\operatorname{E}(X_{2}) + \dots + a_{n}\operatorname{E}(X_{n})$
$X_1, X_2 \dots X_n$	$\operatorname{Var}(aX_1+b)$	$=a^2 \operatorname{Var}(X_1)$
	$\operatorname{Var}\left(a_1X_1 + a_2X_2 + \ldots + a_nX_n\right)$	
	$=a_1^2 \operatorname{Var}(X_1)$	$+a_2^2 \operatorname{Var}(X_2) + \ldots + a_n^2 \operatorname{Var}(X_n)$
for independent identically distributed	$\mathbf{E}(X_1 + X_2 + $	$\dots + X_n = n\mu$
variables $X_1, X_2 \dots X_n$	$\operatorname{Var}(X_1 + X_2)$	$+\ldots+X_n\Big)=n\sigma^2$
approximate confidence interval for μ	$\left(\overline{x} - z\frac{s}{\sqrt{n}}, \overline{x} + z\frac{s}{\sqrt{n}}\right)$	
distribution of sample	mean	$\mathbf{E}\left(\bar{X}\right) = \mu$
mean \bar{X}	variance	$\operatorname{Var}\left(\bar{X}\right) = \frac{\sigma^2}{n}$

Calculus

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$$

$$\frac{d}{dx}(\cot(ax)) = -a\csc^2(ax)$$

$$\frac{d}{dx}(\sec(ax)) = a\sec(ax)\tan(ax)$$

$$\frac{d}{dx}(\csc(ax)) = -a\csc(ax)\cot(ax)$$

$$\frac{d}{dx}(\csc(ax)) = -a\csc(ax)\cot(ax)$$

$$\frac{d}{dx}(\sin^{-1}(ax)) = \frac{a}{\sqrt{1-(ax)^2}}$$

$$\frac{d}{dx}(\cos^{-1}(ax)) = \frac{-a}{\sqrt{1-(ax)^2}}$$

$$\frac{d}{dx}(\tan^{-1}(ax)) = \frac{a}{1+(ax)^2}$$

Calculus – continued

$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$
$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$
$\int \frac{1}{x} dx = \log_e x + c$
$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$
$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\int \sec^2(ax) dx = \frac{1}{a} \tan(ax) + c$
$\int \csc^2(ax) dx = -\frac{1}{a} \cot(ax) + c$
$\int \sec(ax)\tan(ax)dx = \frac{1}{a}\sec(ax) + c$
$\int \csc(ax)\cot(ax)dx = -\frac{1}{a}\csc(ax) + c$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c, \ a > 0$
$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c, \ a > 0$
$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$
$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, \ n \neq -1$
$\int \frac{1}{ax+b} dx = \frac{1}{a} \log_e ax+b + c$

product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
integration by parts	$\int u \frac{dv}{dx} dx = u v - \int v \frac{du}{dx} dx$
Euler's method	If $\frac{dy}{dx} = f(x, y)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + h \times f(x_n, y_n)$.
arc length parametric	$\int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area Cartesian about <i>x</i> -axis	$\int_{x_1}^{x_2} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
surface area Cartesian about <i>y</i> -axis	$\int_{y_1}^{y_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$
surface area parametric about <i>x</i> -axis	$\int_{t_1}^{t_2} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area parametric about <i>y</i> -axis	$\int_{t_1}^{t_2} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

Kinematics

acceleration	$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v$	$v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$
constant acceleration	v = u + at	$s = ut + \frac{1}{2}at^2$
formulas	$v^2 = u^2 + 2as$	$s = \frac{1}{2}(u+v)t$

Vectors in two and three dimensions

$\underline{\mathbf{r}}(t) = x(t)\underline{\mathbf{i}} + y(t)\underline{\mathbf{j}} + z(t)\underline{\mathbf{k}}$	$ \mathbf{r}(t) = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}$
	$\dot{\mathbf{r}}(t) = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\dot{\mathbf{i}} + \frac{dy}{dt}\dot{\mathbf{j}} + \frac{dz}{dt}\dot{\mathbf{k}}$
	vector scalar product $\mathbf{r}_1 \cdot \mathbf{r}_2 = \mathbf{r}_1 \mathbf{r}_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2$
for $\underline{r}_1 = x_1 \underline{i} + y_1 \underline{j} + z_1 \underline{k}$ and $\underline{r}_2 = x_2 \underline{i} + y_2 \underline{j} + z_2 \underline{k}$	vector cross product $ \begin{bmatrix} i & j & k \\ x_1 \times r_2 = \begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = (y_1 z_2 - y_2 z_1) \underline{i} + (x_2 z_1 - x_1 z_2) \underline{j} + (x_1 y_2 - x_2 y_1) \underline{k} $
vector equation of a line	$\mathbf{r}(t) = \mathbf{r}_1 + t\mathbf{r}_2 = (x_1 + x_2 t)\mathbf{i} + (y_1 + y_2 t)\mathbf{j} + (z_1 + z_2 t)\mathbf{k}$
parametric equation of a line $x(t) = x_1 + x_2 t$ $y(t) = y_1 + y_2 t$ $z(t) = z_1 + z_2 t$	
vector equation of a plane	$\mathbf{r}(s, t) = \mathbf{r}_0 + s\mathbf{r}_1 + t\mathbf{r}_2$ = $(x_0 + x_1s + x_2t)\mathbf{i} + (y_0 + y_1s + y_2t)\mathbf{j} + (z_0 + z_1s + z_2t)\mathbf{k}$
parametric equation of a plane	$x(s, t) = x_0 + x_1s + x_2t, y(s, t) = y_0 + y_1s + y_2t, z(s, t) = z_0 + z_1s + z_2t$
Cartesian equation of a plane	ax + by + cz = d

Circular functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\sin(2x) = 2\sin(x)\cos(x)$	
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	$\tan\left(2x\right) = \frac{2\tan\left(x\right)}{1 - \tan^2\left(x\right)}$
$\sin^{2}(ax) = \frac{1}{2} (1 - \cos(2ax))$	$\cos^2(ax) = \frac{1}{2}(1 + \cos(2ax))$