Victorian Certificate of Education
2023

Print exam correction: Formula Sheet: page 2., Data analysis, probability and statistics table, 4th box, '+' has been added before X_{n}

SPECIALIST MATHEMATICS
 Written examination 1

Friday 3 November 2023
Reading time: 9.00 am to 9.15 am (15 minutes)
Writing time: 9.15 am to 10.15 am (1 hour)

QUESTION AND ANSWER BOOK

Structure of book		
Number of questions	Number of questions to be answered	Number of marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 11 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
Unless otherwise specified, an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} \mathrm{~s}^{-2}$, where $g=9.8$

Question 1 (4 marks)
Consider the function f with rule $f(x)=\frac{x^{2}+x-6}{x-1}$.
a. Show that the rule for the function f can be written as $f(x)=x+2-\frac{4}{x-1}$. 1 mark
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Sketch the graph of f on the axes below, labelling any asymptotes with their equations.

Question 2 （3 marks）
Consider the complex number $z=(b-i)^{3}$ ，where $b \in R^{+}$．
Find b given that $\arg (z)=-\frac{\pi}{2}$ ．
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 （3 marks）
A particle moves along a straight line．When the particle is $x \mathrm{~m}$ from a fixed point O ，its velocity， $v \mathrm{~m} \mathrm{~s}^{-1}$ ，is given by

$$
v=\frac{3 x+2}{2 x-1}, \text { where } x \geq 1
$$

a．Find the acceleration of the particle，in $\mathrm{m} \mathrm{s}^{-2}$ ，when $x=2$ ．
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b．Find the value that the velocity of the particle approaches as x becomes very large．

Question 4 (3 marks)
Consider the relation $x \arcsin \left(y^{2}\right)=\pi$.
Use implicit differentiation to find $\frac{d y}{d x}$ at the point $\left(6, \frac{1}{\sqrt{2}}\right)$.
Give your answer in the form $-\frac{\pi \sqrt{a}}{b}$, where $a, b \in Z^{+}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 (3 marks)
Evaluate $\int_{1}^{2} x^{2} \log _{e}(x) d x$

Question 6 (4 marks)
Josie travels from home to work in the city. She drives a car to a train station, waits, and then rides on a train to the city. The time, X_{c} minutes, taken to drive to the station is normally distributed with a mean of 20 minutes ($\mu_{c}=20$) and standard deviation of 6 minutes ($\sigma_{c}=6$). The waiting time, X_{w} minutes, for a train is normally distributed with a mean of 8 minutes ($\mu_{w}=8$) and standard deviation of $\sqrt{3}$ minutes $\left(\sigma_{w}=\sqrt{3}\right)$. The time, X_{t} minutes, taken to ride on a train to the city is also normally distributed with a mean of 12 minutes ($\mu_{t}=12$) and standard deviation of 5 minutes $\left(\sigma_{t}=5\right)$. The three times are independent of each other.
a. Find the mean and standard deviation of the total time, in minutes, it takes for Josie to travel from home to the city.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Josie's waiting time for a train on each work day is independent of her waiting time for a train on any other work day. The probability that, for 12 randomly chosen work days, Josie's average waiting time is between 7 minutes 45 seconds and 8 minutes 30 seconds is equivalent to $\operatorname{Pr}(a<Z<b)$, where $Z \sim \mathrm{~N}(0,1)$ and a and b are real numbers.

Find the values of a and b.

Question 7 (4 marks)
The curve defined by the parametric equations

$$
x=\frac{t^{2}}{4}-1, y=\sqrt{3} t, \text { where } 0 \leq t \leq 2
$$

is rotated about the x-axis to form an open hollow surface of revolution.
Find the surface area of the surface of revolution.
Give your answer in the form $\pi\left(\frac{a \sqrt{b}}{c}-d\right)$, where a, b, c and $d \in Z^{+}$.

Question 8 (4 marks)
A function f has the rule $f(x)=x e^{2 x}$.
Use mathematical induction to prove that $f^{(n)}(x)=\left(2^{n} x+n 2^{n-1}\right) e^{2 x}$ for $n \in Z^{+}$, where $f^{(n)}(x)$ represents the $n^{\text {th }}$ derivative of $f(x)$. That is, $f(x)$ has been differentiated n times.
\qquad

Question 9 (6 marks)
A plane contains the points $A(1,3,-2), B(-1,-2,4)$ and $C(a,-1,5)$, where a is a real constant. The plane has a y-axis intercept of 2 at the point D.
a. Write down the coordinates of point D. 1 mark
\qquad
b. Show that $\overrightarrow{A B}$ and $\overrightarrow{A D}$ are $-2 \underset{\sim}{\mathrm{i}}-5 \underset{\sim}{\mathrm{j}}+6 \underset{\sim}{\mathrm{k}}$ and $-\underset{\sim}{\mathrm{i}}-\underset{\sim}{\mathrm{j}}+2 \underset{\sim}{\mathrm{k}}$, respectively.
\qquad
\qquad
\qquad
\qquad
c. Hence find the equation of the plane in Cartesian form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d. Find a.
\qquad
\qquad
\qquad
e. $\overline{A B}$ and $\overline{A D}$ are adjacent sides of a parallelogram. Find the area of this parallelogram.
\qquad
\qquad

Question 10 (6 marks)
The position vector of a particle at time t seconds is given by

$$
\underset{\sim}{\mathrm{r}}(t)=\left(5-6 \sin ^{2}(t)\right)_{\sim}^{\mathrm{i}}+(1+6 \sin (t) \cos (t)) \underset{\sim}{\mathrm{j}}, \text { where } t \geq 0 \text {. }
$$

a. Write $5-6 \sin ^{2}(t)$ in the form $\alpha+\beta \cos (2 t)$, where $\alpha, \beta \in Z^{+}$.
\qquad
\qquad
\qquad
\qquad
\qquad
b. Show that the Cartesian equation of the path of the particle is $(x-2)^{2}+(y-1)^{2}=9$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. The particle is at point A when $t=0$ and at point B when $t=a$, where a is a positive real constant.
If the distance travelled along the curve from A to B is $\frac{3 \pi}{4}$, find a.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d. Find all values of t for which the position vector of the particle, $\underset{\sim}{\mathrm{r}}(t)$, is perpendicular to its velocity vector, $\underset{\sim}{\underset{\sim}{r}}(t)$.

Victorian Certificate of Education 2023

SPECIALIST MATHEMATICS
 Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mensuration

area of a circle segment	$\frac{r^{2}}{2}(\theta-\sin (\theta))$	volume of a sphere	$\frac{4}{3} \pi r^{3}$
volume of a cylinder	$\pi r^{2} h$	area of a triangle	$\frac{1}{2} b c \sin (A)$
volume of a cone	$\frac{1}{3} \pi r^{2} h$	sine rule	$\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
volume of a pyramid	$\frac{1}{3} A h$	$\operatorname{cosine~rule~}$	$c^{2}=a^{2}+b^{2}-2 a b \cos (C)$

Algebra, number and structure (complex numbers)

$z=x+i y=r(\cos (\theta)+i \sin (\theta))=r \operatorname{cis}(\theta)$	$\|z\|=\sqrt{x^{2}+y^{2}}=r$	
$-\pi<\operatorname{Arg}(z) \leq \pi$	$z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$	
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$	de Moivre's theorem	$z^{n}=r^{n} \operatorname{cis}(n \theta)$

Data analysis, probability and statistics

for independent random variables $X_{1}, X_{2} \ldots X_{\mathrm{n}}$	$\mathrm{E}\left(a X_{1}+b\right)=a \mathrm{E}\left(X_{1}\right)+b$ $\mathrm{E}\left(a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}\right)$ $=a_{1} \mathrm{E}\left(X_{1}\right)+a_{2} \mathrm{E}\left(X_{2}\right)+\ldots+a_{n} \mathrm{E}\left(X_{n}\right)$		
	$\operatorname{Var}\left(a X_{1}+b\right)=a^{2} \operatorname{Var}\left(X_{1}\right)$ $\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}\right)$ $=a_{1}{ }^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}{ }^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}{ }^{2} \operatorname{Var}\left(X_{n}\right)$		
	$\mathrm{E}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=n \mu$	\quad	$\operatorname{Var}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=n \sigma^{2}$
:---			
approximate confidence interval for μ			
$\left(\bar{x}-z \frac{s}{\sqrt{n}}, \bar{x}+z \frac{s}{\sqrt{n}}\right)$			
distribution of sample mean \bar{X}			

Calculus

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\
& \frac{d}{d x}\left(e^{a x}\right)=a e^{a x} \\
& \frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x} \\
& \frac{d}{d x}(\sin (a x))=a \cos (a x)
\end{aligned}
$$

$$
\frac{d}{d x}(\cos (a x))=-a \sin (a x)
$$

$$
\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)
$$

$$
\frac{d}{d x}(\cot (a x))=-a \operatorname{cosec}^{2}(a x)
$$

$$
\frac{d}{d x}(\sec (a x))=a \sec (a x) \tan (a x)
$$

$$
\frac{d}{d x}(\operatorname{cosec}(a x))=-a \operatorname{cosec}(a x) \cot (a x)
$$

$$
\frac{d}{d x}\left(\sin ^{-1}(a x)\right)=\frac{a}{\sqrt{1-(a x)^{2}}}
$$

$$
\frac{d}{d x}\left(\cos ^{-1}(a x)\right)=\frac{-a}{\sqrt{1-(a x)^{2}}}
$$

$$
\frac{d}{d x}\left(\tan ^{-1}(a x)\right)=\frac{a}{1+(a x)^{2}}
$$

Calculus - continued

product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
quotient rule	$\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
integration by parts	$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$
Euler's method	If $\frac{d y}{d x}=f(x, y), x_{0}=a$ and $y_{0}=b$, then $x_{n+1}=x_{n}+h$ and $y_{n+1}=y_{n}+h \times f\left(x_{n}, y_{n}\right)$. arc length parametric
$\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2} d t}$	
surface area Cartesian about x-axis	$\int_{x_{1}}^{x_{2}} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
surface area Cartesian about y-axis	$\int_{y_{1}}^{y_{2}} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$
surface area parametric about x-axis	$\int_{t_{1}}^{t_{2}} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
surface area parametric about y-axis	$\int_{t_{1}}^{t_{2}} 2 \pi x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Kinematics

acceleration	$a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$	
constant acceleration formulas	$v=u+a t$	$s=u t+\frac{1}{2} a t^{2}$
	$v^{2}=u^{2}+2 a s$	$s=\frac{1}{2}(u+v) t$

Vectors in two and three dimensions

$\underset{\sim}{\mathrm{r}}(\mathrm{t})=x(t) \underset{\sim}{\mathrm{i}}+y(t) \underset{\sim}{\mathrm{j}}+z(t) \underset{\sim}{\mathrm{k}}$	$\|\underset{\sim}{\mathrm{r}}(t)\|=\sqrt{x(t)^{2}+y(t)^{2}+z(t)^{2}}$
	$\underset{\sim}{\dot{\mathrm{q}}}(t)=\frac{d \mathrm{r}}{d t}=\frac{d x}{d t} \mathrm{i}+\frac{d y}{d t} \underset{\sim}{\mathrm{j}}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$
for ${\underset{\sim}{1}}_{1}=x_{1} \underset{\sim}{\dot{i}}+y_{1} \underset{\sim}{\mathrm{j}}+z_{1} \underset{\sim}{\mathrm{k}}$ and ${\underset{\sim}{r}}_{2}=x_{2} \underset{\sim}{\mathrm{i}}+y_{2} \underset{\sim}{\mathrm{j}}+z_{2} \underset{\sim}{\mathrm{k}}$	vector scalar product ${\underset{\sim}{1}}_{1} \cdot{\underset{\sim}{r}}_{2}=\left\|\mathfrak{r}_{1}\right\|\left\|{\underset{\sim}{r}}_{2}\right\| \cos (\theta)=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
	vector cross product ${\underset{\sim}{r}}_{1} \times{\underset{\sim}{\mathbf{r}}}_{2}=\left\|\begin{array}{ccc} \underset{\sim}{\mathfrak{i}} & \underset{\sim}{\mathbf{j}} & \underset{\sim}{\mathrm{k}} \\ x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \end{array}\right\|=\left(y_{1} z_{2}-y_{2} z_{1}\right) \underset{\sim}{\mathrm{i}}+\left(x_{2} z_{1}-x_{1} z_{2}\right) \underset{\sim}{\mathbf{j}}+\left(x_{1} y_{2}-x_{2} y_{1}\right) \underset{\sim}{\mathbf{k}}$
vector equation of a line	$\underset{\sim}{\mathrm{r}}(t)={\underset{\sim}{1}}^{1}+t \underset{\sim}{\mathbf{r}_{2}}=\left(x_{1}+x_{2} t\right) \underset{\sim}{\mathfrak{i}}+\left(y_{1}+y_{2} t\right) \underset{\sim}{\mathbf{j}}+\left(z_{1}+z_{2} t\right) \underset{\sim}{\mathrm{k}}$
parametric equation of a line	$x(t)=x_{1}+x_{2} t \quad y(t)=y_{1}+y_{2} t \quad z(t)=z_{1}+z_{2} t$
vector equation of a plane	$\begin{aligned} & \underset{\sim}{\mathrm{r}}(s, t)=\underset{\sim}{\mathrm{r}}+s{\underset{\sim}{r}}_{1}+t \underset{\sim}{\mathrm{r}} \\ & =\left(x_{0}+x_{1} s+x_{2} t\right){ }_{\sim}^{\mathrm{i}}+\left(y_{0}+y_{1} s+y_{2} t\right){\underset{\sim}{\mathrm{j}}}_{\mathrm{j}}+\left(z_{0}+z_{1} s+z_{2} t\right) \underset{\sim}{\mathrm{k}} \end{aligned}$
parametric equation of a plane	$x(s, t)=x_{0}+x_{1} s+x_{2} t, y(s, t)=y_{0}+y_{1} s+y_{2} t, z(s, t)=z_{0}+z_{1} s+z_{2} t$
Cartesian equation of a plane	$a x+b y+c z=d$

Circular functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$	
$1+\tan ^{2}(x)=\sec ^{2}(x)$	$\cot ^{2}(x)+1=\operatorname{cosec}^{2}(x)$
$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$	$\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$	$\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$	$\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}$
$\sin (2 x)=2 \sin (x) \cos (x)$	
$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$	$\tan (2 x)=\frac{2 \tan (x)}{1-\tan 2(x)}$
$\sin ^{2}(a x)=\frac{1}{2}(1-\cos (2 a x))$	$\cos ^{2}(a x)=\frac{1}{2}(1+\cos (2 a x))$

