
\square
\square

MATHEMATICAL METHODS
 Written examination 1

Tuesday 30 May 2023
Reading time: 10.30 am to 10.45 am (15 minutes)
Writing time: $\mathbf{1 0 . 4 5}$ am to $\mathbf{1 1 . 4 5 ~ p m}$ (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
8	8	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 12 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your student number in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.

At the end of the examination

- You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given, unless otherwise specified.

In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Question 1 (3 marks)
a. Find the derivative of $y=x \sin (x)$ with respect to x.
\qquad
\qquad
\qquad
b. Evaluate $\int_{0}^{\frac{\pi}{2}}(x+\cos (x)) d x$.

2 marks
\qquad
\qquad
\qquad
\qquad
\qquad

Question 2 (2 marks)
Let $f^{\prime}(x)=(3-x)^{3}$.
Find $f(x)$ given that $f(4)=\frac{5}{4}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 (5 marks)
A school's first-aid room contains five first-aid kits. Three first-aid kits are red and two are orange. For three days in a row, one first-aid kit is selected at random for an excursion and returned at the end of the day.
Each of the five first-aid kits has an equal chance of being selected each day.
Let R represent the number of red first-aid kits selected over the three days.
a. Find $\operatorname{Pr}(R=3)$, the probability that the first-aid kit selected is red on all three days.
b. Find the standard deviation of the random variable R.
\qquad
\qquad
\qquad
c. Find $\operatorname{Pr}(R=3 \mid R \geq 2)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 (4 marks)
Let $g(x)=2^{2 x}-9 \times 2^{x}+20$.
a. Evaluate $g\left(\log _{2}(3)\right)$, giving your answer as an integer. 2 marks
b. \quad Solve $g(x)=0$ for x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 5 (6 marks)

Consider a continuous random variable X with probability density function f given by

$$
f(x)= \begin{cases}\frac{x+c}{2} & -d \leq x \leq d \\ 0 & \text { elsewhere }\end{cases}
$$

where $c, d \in R$ and $c \geq 1$.
a. Find d in terms of c. 3 marks
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. Given that $\mathrm{E}(X)=\frac{1}{24}$, find the values of c and d.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CONTINUES OVER PAGE

Question 6 (6 marks)

Consider the function f, where $f: D \rightarrow R, f(x)=3+\frac{2}{x-1}$, where D is the maximal domain of f.
a. State D, the maximal domain of f.
\qquad
\qquad
b. Sketch the graph of $y=f(x)$. Label any asymptotes with their equation and the axial intercepts with their coordinates.

c. Let $g: R \backslash\{0\} \rightarrow R, g(x)=\frac{1}{x}$.

Determine the rule of the function h such that the graph of $y=h(g(x-1))$ is identical to the graph of $y=f(x)$.

Question 7 (6 marks)
Let $f(x)=\log _{e}\left(3+2 x-x^{2}\right)$.
a. Find the implied domain of f.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b. \quad State the x-coordinate for the local maximum of $f(x)$.

1 mark
\qquad
\qquad
\qquad
c. Find the values of x when $f(x)=0$.
\qquad
\qquad
\qquad

Question 8 (8 marks)
Consider the function f, where $f: R \rightarrow R, f(x)=\frac{1}{3} x^{2}+\sin (\pi x)$,
and a function g, where the domain of g is R but the equation of g is not known.
Part of the graphs of $y=f(x)$ and $y=g(x)$ are shown below. Both functions pass through the origin.

a. Based on the graphs above, state one reason why the graph of $y=g(x)$ is not the graph of $y=f^{\prime}(x)$.
\qquad
\qquad
\qquad
b. Determine the equation of $g(x)$ given that $g^{\prime}(x)=f(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c. Some functions have the property $f(x)=f(-x)$ for all $x \in R$.

Show that when two functions, m and n, have this property, the function $k(x)=m(x)+n(x)$ also has this property.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
d. Consider the function h, where $h(x)=\frac{1}{3} x^{2}+\sin (\pi x-c), c \in R$.

Find all values of c for which $h(x)=h(-x)$, for all $x \in R$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Victorian Certificate of Education 2023

MATHEMATICAL METHODS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference.
A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Mathematical Methods formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b) h$	volume of a pyramid	$\frac{1}{3} A h$
curved surface area of a cylinder	$2 \pi r h$	volume of a sphere	$\frac{4}{3} \pi r^{3}$
volume of a cylinder	$\pi r^{2} h$	area of a triangle	$\frac{1}{2} b c \sin (A)$
volume of a cone	$\frac{1}{3} \pi r^{2} h$		

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$	$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left((a x+b)^{n}\right)=a n(a x+b)^{n-1}$	$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq-1$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$	$\int e^{a x} d x=\frac{1}{a} e^{a x}+c$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$	$\int \frac{1}{x} d x=\log _{e}(x)+c, x>0$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$	$\int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$	$\int \cos (a x) d x=\frac{1}{a} \sin (a x)+c$
$\frac{d}{d x}(\tan (a x))=\frac{a}{\cos ^{2}(a x)}=a \sec ^{2}(a x)$	quotient rule
product rule	$\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
chain rule	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$

Probability

$\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$	$\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$	
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}$		
mean $\quad \mu=\mathrm{E}(X)$	variance	$\operatorname{var}(X)=\sigma^{2}=\mathrm{E}\left((X-\mu)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$

Probability distribution		Mean	Variance
discrete	$\operatorname{Pr}(X=x)=p(x)$	$\mu=\sum x p(x)$	$\sigma^{2}=\sum(x-\mu)^{2} p(x)$
continuous	$\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x$	$\mu=\int_{-\infty}^{\infty} x f(x) d x$	$\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x$

Sample proportions

$\hat{P}=\frac{X}{n}$	mean	$\mathrm{E}(\hat{P})=p$	
standard deviation	$\operatorname{sd}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

