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Sample problem-solving or modelling task – rectangular hyperbola

Mathematical Methods Unit 4 

Sample modelling or problem-solving task – transforming rectangular hyperbolas 

Introduction
Mathematical modelling is a process of using mathematical constructs, structures and techniques to represent and describe a real-world context or system, in a simple and concise way that enables investigation of features and characteristics of its behaviour, analysis of particular aspects or solution of problems of interest; and making predictions related to the context or system.
In mathematics problems are generated from issues, questions, conjectures and hypotheses arising from a range of contexts. New problems may arise in their own right, or as a variation, re-formulation, extension or generalisation of a known problem or class of problems.
The task considers a theoretical context involving rectangular hyperbolas. The use of parameters to define a family of rectangular hyperbola functions provides opportunity to explore the effect of changes in the values of these parameters has on graphs, and consider the existence of stationary points, discontinuities; composite functions, and distances between points on branches of these graphs and related minimum or maximum values.  

Choosing the context and identifying questions of interest 
· Theoretical context involving rectangular hyperbolas

· Transformation from 
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 and graphs

· Transformation from  
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and graphs
· For 
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 two branches, reflection symmetry in the line 
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A context such as the following could be used to develop a theoretical problem-solving task which involves transformations of the basic rectangular hyperbola from the form 
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are real constants; transformation from the form 
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 and related graphs, distances and areas as applicable.
The modelling or problem-solving task is to be of 2 - 3 hours duration over a period of 1 week.

Part 1 

a. Express 
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in the form 
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 and graph the function, stating the maximal domain and range, and clearly identifying key features of the graph.
b. Repeat a. for the function 
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and compare the graphs of the two functions.

c. Investigate the existence of any stationary points or points of inflection.
d. Analyse the graph of 
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. Explore the 3 cases of 
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Part 2

a. Express 
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 in the form 
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and graph the function, stating the maximal domain and range, and clearly identifying key features of the graph.
b. Repeat a. for the function 
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 and compare the graphs of the two functions.

c. Analyse the graph of 
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 in terms of the values of  and describe any symmetries. Explore the three cases of  
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Composite functions: extension question
d. Let 
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 where D is the maximal domain of 
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composite function 
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 exists. Analyse the graph of the composite function.

Part 3
Consider 
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a. Find in terms of the variables, 
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, the distance from the origin to some point 
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on the graph

b. Hence find the maximum and minimum distance from the origin to some point 
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 on the graph
c. Explore if both maximum and minimum distances exist
Again consider 
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d. Find in terms of the variables, 
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, the distance from the vertex of one branch to some point 
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 on the symmetric branch.                

e. Hence find the maximum and minimum distance from the vertex of one branch to some point 
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 on the symmetric branch. 

Areas of study

	Area of study
	Content dot point

	Functions and graphs
	5

	Algebra
	5

	Calculus
	1, 4, 5

	Probability and statistics
	-


The following content from the areas of study is addressed through this task.

Outcomes

The following outcomes, key knowledge and key skills are addressed through this task.

	Outcome
	Key knowledge dot point
	Key skill dot point

	1
	1, 4, 7, 10, 12
	1, 5, 7, 10, 12, 13

	2
	1, 2, 3, 4
	1, 2, 4, 5

	3
	1, 2, 3, 4, 6
	1, 2, 3, 4, 5, 6, 7, 9, 10, 11
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