
NEW DIRECTIONS 2014

1. Introduction

1.1 Motivation

In the past two years there has been a a range of events that have promoted broader

discussion about future directions for senior secondary mathematics curriculum in

Victoria, including

• The release of the Australian Curriculum in Mathematics for the senior curriculum

by the Australian Curriculum, Assessment and Reporting Authority 1 There was

extensive consultation across the country with members of the community

including mathematicians, teachers, representatives from the state education

authorities, and teacher educators. There was also systematic benchmarking against

the courses of several other systems of other countries. State and territory

curriculum, assessment and certification authorities are responsible for how senior

secondary courses are organised, and they will determine how the Australian

Curriculum content is to be integrated into their courses.

• The 21st Century Mathematics 2 conference run in Stockholm in April 2013. It was

organised by the Centre for Curriculum Redesign in collaboration with the OECD

and the Confederation of Swedish Enterprise. The discussion centred around the

question ’What students should learn in the 21 st century?’ The rationale was the

following strong statement.

In the 21st century, humanity is facing severe difficulties at the societal

(global warming, financial stresses), economic (globalisation, innovation)

and personal levels (employability, happiness). Technology’s exponential

growth is rapidly compounding the problems via automation and

off-shoring, which are producing social disruptions. Education is falling

behind the curve, as it did during the Industrial Revolution. The last

profound changes to curriculum were effected in the late 1800’s as a

response to the sudden growth in societal and human capital needs. As the

world of the 21st century bears little resemblance to that of the 19th century,

education curricula are overdue for a major redesign.

1 The senior mathematics curriculum is found at http://www.australiancurriculum.edu.au/SeniorSecondary/Overview

2 http://eventus.trippus.se/21stcenturymaths
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This is all the more true in Science/Technology/Engineering/Math (STEM),

where demand is outpacing supply worldwide. Math being the foundation

of STEM, and in turn innovation, the situation requires urgent attention.

Beyond STEM professions, we are seeing very significant innumeracy in a

very large segment of the population, which has severe consequences on the

ability to understand the world’s difficulties.

• A joint VCAA/DEECD forum in Melbourne in June 2014 with Charles Fadel, the

organiser of the Stockholm conference, which included speakers from industry. The

forum provided an opportunity to discuss the kind of mathematics curriculum

wanted now and into the future, and was convened to examine the extent to which

the current Victorian curriculum meets those demands and how it might need to

evolve in future years.

• A meeting with Conrad Wolfram in May 2014 convened by the Secretary of the

Department, . An aspect of the conversation was the following.

What’s wrong with today’s math?

It’s 80 % a different subject from what is required.

Why?

Because computers mechanised computation beyond previous imagination

and do calculating really well. Today’s math education spends 80 % of the

curriculum time gaining expertise in hand-calculation methods and

algebraic manipulation. The curriculum is ordered by the difficulty of the

skills necessary to complete the calculation, rather than the difficulty of

understanding the complexity of the topic.

• A meeting with the industry sub-committee of the Decadal Plan for Mathematics

which is being overseen by the Australian Academy of Science. The meeting listened

to four members of the subcommittee and heard of their views. They could see the

need for a change in the way mathematics is taught.

• The review of the VCE mathematics study, and preparation of the draft for

consultation of the proposed Victorian mathematics study design

for years 11 and 123.

This took place 2013-2014,starting with the work of the Mathematics Expert

Reference panel convened by the VCAA to provide advice on directions for the review,

and the VCAA Proposed directions discussion paper (June 2013). Comprehensive

bench marking with similar courses from other countries was undertaken.

3 http://www.vcaa.vic.edu.au/Documents/vce/mathematics/MathsSD_consultation_draft.pdf
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1.2 Purpose

The purpose of this paper is to connect the possible directions for the evolution of the

Senior Secondary Mathematics Curriculum in Victoria with the

• different pathways that research in mathematics has taken and the areas that are

considered important by eminent mathematicians.

• application of mathematics in a vast number of areas

• development of mathematics in the twentieth century and the present century.

• use of technology in mathematics and its applications

• views of some mathematicians and committees of mathematicians on what has

happened in the past century and what they think will be the directions of

mathematics and its applications in the future.

A necessity for achieving these connections is to briefly outline the development and

history of the senior mathematics curriculum in Victoria

1.3 Structure

This paper has the following sections.

1 Introduction

2 Twentieth Century Mathematics

3 Twenty-first Century Mathematics and Statistics

4 Contemporary Applications

5 Possible implications for mathematics education

6 The Victorian Senior Mathematics Curriculum

7 Concluding remarks

This paper has been developed for a general reader and draws on the views of a range of

people who are well regarded in their field, and well placed to comment on to what is

important in mathematics.

1.4 The growth of mathematics

It does not seem to be common knowledge that mathematics is both changing and

increasing. The twentieth century mathematician Alexander Ostrowski once said that
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when he came up for his qualifying examination in Germany in 1915 it was expected

that he would be prepared to deal with any question in any branch of mathematics. In

the late 1940’s John von Neumann estimated that a skilled mathematician might know ,

in essence ten percent of what is known. Today MathSciNet4, an electronic collection of

Reviews of the American Mathematical Society contains information on about 2 million

articles from 1,900 mathematical journals. The amount of published mathematics is

increasing rapidly. Even the most accomplished mathematician is now is familiar with

only a small percentage of the totality of mathematical knowledge. It is clear that the

mathematical output of the twentieth century exceeded that of all previous centuries

put together. This growth shows no signs of abating.

1.5 What is a mathematician?

Since we are discussing the relationship between developments in mathematics and

our curriculum it is worthwhile pausing for a moment to get at a view on what

mathematics is. The following is not a philosophical view, but a practical job

description that comes from the United States Department of Labour 5

Mathematicians typically do the following:

• Expand knowledge in mathematical areas, such as algebra or geometry, by

developing new rules, theories, and concepts

• Use mathematical formulas and models to prove or disprove theories

• Apply mathematical theories and techniques to solve practical problems in business,

engineering, the sciences, or other fields

• Develop mathematical or statistical models to analyse data

• Interpret data and report conclusions from their analyses

• Use data analysis to support and improve business decisions

The following are examples of types of mathematicians again given by the United States

Department of Labour:

Applied mathematicians use theories and techniques, such as mathematical

modelling, to solve practical problems. These mathematicians typically work with

individuals in other occupations to solve these problems. For example, they may work

with chemists and materials scientists and chemical engineers to analyse the

4 http://www.ams.org/mathscinet/

5 http://www.bls.gov/ooh/math/mathematicians.htm#tab-2
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effectiveness of new drugs. Other applied mathematicians may work with industrial

designers to study the aerodynamic characteristics of new automobiles.

Theoretical mathematicians do research to identify unexplained issues in mathematics

and resolve them. They are primarily concerned with exploring new areas and

relationships of mathematical theories to increase knowledge and understanding about

the field. Although some may not consider the practical use of their findings, the

knowledge they develop can be an important part of many scientific and engineering

achievements.

Despite the differences, these areas of mathematics frequently overlap. Many

mathematicians will use both applied and theoretical knowledge in their work.

1.6 What is a statistician?

This is again from the United States Department of Labour. 6 Statisticians must develop

techniques to overcome problems in data collection and analysis. Statisticians use

statistical methods to collect and analyse data and help solve real-world problems in

business, engineering, the sciences, or other fields.

Statisticians typically do the following:

• Apply statistical theories and methods to solve practical problems in business,

engineering, the sciences, or other fields

• Decide what data are needed to answer specific questions or problems

• Determine methods for finding or collecting data

• Design surveys or experiments or opinion polls to collect data

• Collect data or train others to do so

• Analyse and interpret data

• Report conclusions from their analyses

• Statisticians design surveys, questionnaires, experiments, and opinion polls to

collect the data they need. They may also write instructions for other workers on

how to collect and arrange the data. Surveys may be mailed, conducted over the

phone, collected online, or gathered through some other means.

While distinctive aspects of discourse in mathematics and statistics is sometimes

highlighted they are closely related fields.

6 http://www.bls.gov/ooh/math/statisticians.htm#tab-2
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What is mathematics?

It is worth recounting a variety of views about the importance, nature and role of

Mathematics Here is a definition of what Mathematics is by Keith Devlin 7

According to this new definition, what the mathematician does is examine

abstract patterns-numerical patterns, patterns of shape, patterns of motion,

patterns of behaviour, voting patterns in a population, patterns of repeating

chance events, and so on. Those patterns can be either real or imagined,

visual or mental, static or dynamic, qualitative or quantitative, purely

utilitarian or of little more than recreational interest. They can arise from the

world around us, from the depths of space and time, or from the inner

workings of the human mind. Different kinds of patterns give rise to different

branches of mathematics. For example:

• Arithmetic and number theory study the patterns of number and

counting.

• Geometry studies the patterns of shape.

• Calculus allows us to handle patterns of motion (including issues such as

velocity and acceleration, polynomial motion, exponential motion, etc.).

• Logic studies patterns of reasoning.

• Probability theory deals with patterns of chance.

• Topology studies patterns of closeness and position.

and so forth.

1.7 Up to the twentieth century

This is not the place to even briefly outline history of mathematics but it is worth noting

that it has not always been the same. In early civilisations mathematics was about doing

arithmetic. Modern mathematics dates back to the ancient Greeks from about 500 B.C.

It was with the Greeks that Mathematics became an identifiable discipline.The

geometry introduced by the Greeks is still part of our school curriculum and the

teaching of it has been strengthened in the AusVELS now being taught in Victorian

schools. The next major change was the development of Calculus by Isaac Newton and

Gottfied Liebniz in the seventeenth century. Their work is studied by Victorian student

in years 11 and 12 at a suitable level. Gradually from about the middle of the eighteenth

7 Devlin, K. (2008). What will count as mathematics in 2100? In Proof and other Dilemmas (Gold, B., Simons,

R. A., eds.) pp291-311. The Mathematical Association of America.
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century the old idea of formal proof from the ancient Greeks became important. In the

nineteenth century topics such as probability and logic began to be studied. Both of

these topics are considered at an introductory level in the Senior Victorian Curriculum.

We now quote directly from Keith Devlin 8

In the middle of the 19th century, however, a revolution took place. Generally

regarded as having its epicenter in the small university town of Göttingen in

Germany, the revolution’s leaders were the mathematicians Lejeune

Dirichlet, Richard Dedekind, and Bernhard Riemann. In their new

conception of the subject, the primary focus was not performing a

calculation or computing an answer, but formulating and understanding

abstract concepts and relationships. This represented a shift in emphasis

from doing to understanding. For the Göttingen revolutionaries,

mathematics was about ’Thinking in concepts’ (Denken in Begriffen).

Mathematical objects, which had been thought of as given primarily by

formulas, came to be viewed rather as carriers of conceptual properties.

Proving was no longer a matter of transforming terms in accordance with

rules, but a process of logical deduction from concepts.

It was at this stage the concept of function was introduced. The definition of function

given by Dirichlet (1805 -1859) is still the one introduced in Victorian schools today. It is

interesting that this has been a central concept in the Victorian senior curriculum since

the early 1970s. This will be discussed further in the section below. It is a central

concept of our curriculum.

With the concepts introduced at this time mathematicians had a a rigorous way of

handling infinity, a concept that their predecessors had all struggled with.

Devlin believes that the next revolution will leave the nature on mathematics

unchanged but will look very different on the surface. The reason for this is that it will be

applied to areas which have a significant degree of non-determinism or such complexity

that it defies capture by a traditional mathematical framework intelligible to us.

8 Devlin, K. (2008). What will count as mathematics in 2100? In Proof and other Dilemmas (Gold, B., Simons,

R. A., eds.) pp291-311. The Mathematical Association of America.
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1.8 Why mathematics?

Here we quote Professor Brian Schmidt (Nobel prize winner (Physics),2011) 9 who

spoke eloquently and powerfully of the importance of mathematics at the AMSI "Maths

for the future: Keep Australia competitive’ forum, held from 7-8 February 2012 at ANU.

This is followed by a quote from Keith Devlin at the Stockholm conference with a view

about what mathematically trained people can offer to the community.

Everyone in Australia - and I mean everyone - needs to be mathematically

literate, or numerate as we like to say, and our country needs many people to

be more than numerate: we need people to be highly skilled.

For me, the tools of mathematics go hand in hand with the astronomy I

undertake. Each day I spend more time using mathematics than any other

activity. I took eight classes at university in mathematics, almost as many

classes as I did in physics, and twice as many as I took in astronomy.

Now, you may be thinking that I am special - but let’s just look at my family.

My father is a biologist, studying the populations of fish stocks in Alaska and

now Canada - he uses sophisticated mathematics every day to understand

exactly how to ensure that fish stocks remain at healthy levels into the future -

as people fish, or dams release water, or glacial run-off slows or speeds up.

Ah, but he is a scientist, you say. True.

My wife is an economist - whom I met at Harvard. Her education in

economics has almost as much math in it as mine. Solving challenging

coupled differential equations, undertaking sophisticated statistical tests -

all to ensure that economies work efficiently at allowing their people to be

prosperous - it is way more than simply bean counting.

But we all have PhDs. My Australian cousin and her husband who work in

the mining industry as engineers - maths is the fundamental basis of their

work, and, for that matter, Australia’s ability to extract minerals and become

one of the world’s most wealthy countries.

My other cousin and his wife are farmers in Western Australia who do

precision farming, where fertilisers and seeds are linked to a GPS system, and

planted out at optimum values - all calculated by them using, you guessed it

- math. Farming runs on tiny margins - a few percent - and this

sophistication allows them to make money when others go bankrupt.

9 Speech: Brian Schmidt’s mathematical argument, Brian Scmidt, The Australian, February 09, 2012
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Keith Devlin a highly respected mathematician and popularist said the following at the

Stockholm conference.

I have a bachelors and a doctorate in mathematics.

• Every technique and method I learned at university can now be

outsourced to where it can be completed faster and more cheaply.

• The only things I have left of market value are experience, a human

network, and a powerful collection of metacognitive skills including

mathematical thinking.’

Keith Devlin 2012

2. Twentieth Century Mathematics and Statistics

It is impossible to quickly summarise twentieth century mathematics and statistics and

so my choice has been to follow paths which have either changed school mathematics

or evidently may influence what happens in the future. The first half of the century is

easier because the work and directions of David Hilbert and then the Bourbaki group

clearly had a world wide effect on school education. Some of the aspects of this

influence have been viewed in a negative way but in Victoria we still feel the effect of

Hilbert and Bourbaki in our school curriculum.

We also briefly refer to the work of Felix Klein. This was one of the first times an eminent

mathematician was seen to influence a contemporary educational system - in this case

in Germany at the turn of the twentieth century. Today there is project run by the

International Mathematical Union which endeavours to replicate Klein’s work in the

present age.

Two results, Fermat’s last theorem and the four colour theorem are then briefly

discussed. The four colour theorem was chosen as it was the first time that computer

results were used in the proving of a theorem. Fermat’s last theorem stands out as a

result that was claimed by Fermat in the border of a greek mathematical text in the

eighteenth, but the proof of which eluded some of the greatest mathematicians of the

intervening centuries and was proved finally at the end of the twentieth century. It is an

example of a very hard problem which is not very important in itself but in the search

for its solution by many mathematicians a great deal of important mathematics has

been written.

As an application in a different field we refer to the Nobel Prize in Economics for 1997.

The winners were Professor Robert C. Merton, of Harvard University, Cambridge, USA
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and Professor Myron S. Scholes, of Stanford University, Stanford, USA, for the discovery

of ’a new method to determine the value of derivatives’ .

The traditional connection between physics and mathematics was refreshed in the last

decades of the twentieth century. The relationship was beneficial to both disciplines.

We give the account of this by Sir Michael Atiyah.

It is impossible to include all of the important achievements in mathematics in the

twentieth century. For example, the work of Alan Turing and Claude Shannon that lead

us towards the computing that we see today has not been included.

There are endless applications of mathematics in the world today. We mention a few of

these in section 4. Contemporary applications.

2.1 Hilbert

David Hilbert was born in Königsberg, East Prussia in 1862 and received his doctorate

from his home town university in 1885. His knowledge of mathematics was broad and

he excelled in most areas.

In 1900, when he was 38 years old, Hilbert gave a massive homework assignment to all

the mathematicians of the world. This was done when he presented a lecture, entitled

’Mathematical Problems’ before the International Congress of Mathematicians in Paris.

In the biography of Hilbert by Constance Reid 10 it is written that if any mathematician

can be said to be a history of mathematics in his time, it is that of David Hilbert. His

remarkable prescient proposal in 1900 problems for the forthcoming century set the

course of much consequent mathematics. When he died in 1943, It was remarked in

Nature that there was scarcely a mathematician in the world whose work didn’t derive

from Hilbert.

Hilbert began his Paris address with the following.

Who of us would not be glad to lift the veil behind which the future lies

hidden; to cast a glance at the next advances of our science and at the secrets

of its development during future centuries ? What particular goals will there

be toward which the leading mathematical spirits of coming generations will

strive ? What new methods and new facts in the wide and rich field of

mathematical thought will the new centuries disclose ? History teaches the

continuity of the development of science. We know that every age has its own

10 Constance Reid, Hilbert, Springer-Verlag 1996
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problems, which the following age either solves or casts aside as profitless and

replaces by new ones. If we would obtain an idea of the probable

development of mathematical knowledge in the immediate future, we must

let the unsettled questions pass before our minds and look over the problems

which the science of to-day sets and whose solution we expect from the

future. To such a review of problems the present day, lying at the meeting of

the centuries, seems to me well adapted. For the close of a great epoch not

only invites us to look back into the past but also directs our thoughts to the

unknown future.

In 1950, when Hermann Weyl ( another great mathematician of the twentieth century)

was asked by the American Mathematical Society to summarise the history of

mathematics during the first half of the twentieth century, he wrote that if the

terminology of the Paris Problems had not been so technical he could have performed

the required task simply in terms of Hilbert’s problems which had been solved or

partially solved - ’a chart by which we mathematicians have often measured our

progress’ during the past 50 years.

In 1962 Richard Courant said the following at a meeting in Göttingen on the hundredth

anniversary of Hilbert’s birth.

. . . I feel that the consciousness of Hilbert’s spirit is of great actual importance

for mathematics and mathematicians today.. . . I believe that we find

ourselves in a period of danger. In our time of mass media, the call for

reform, as a result of propaganda, can just as easily lead to a narrowing and

choking as to a liberating of mathematical knowledge. That applies, not only

to research in the universities but also instruction in schools. . . .

Living mathematics rests on the fluctuation between the arithmetical powers

of intuition and logic, the individuality of ’grounded’ problems and the

generality of far-reaching abstractions.

2.2 Bourbaki

In the early 1930’s mathematics in France was still recovering from the first world war.

Little influence from what was happening elsewhere in Europe, in particular the

flourishing German groups. Some young French mathematicians were visiting these

groups and wanted to change things in France. A group of young mathematicians

decided to write together to represent the essence of contemporary mathematics. They

were unhappy with most of the existing texts and wanted to adopt a more precise

rigorous style of exposition than had been the case in the past in France.
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They chose to write under the pen name Nicholas Bourbaki , who was a French general

of the First World War. The first book appeared in 1939. The initial books were to be

called as a group Éléments de mathématique (’Elements of Mathematics’) 11.

The first book was on set theory. In the 1940’s several more books were completed.

There is no doubt that there work was highly influential through the middle decades of

the twentieth century. I was not just the one group of mathematicians and many of the

great French mathematicians of the twentieth century have been involved. Up to this

point there are over 30 volumes produced.

Sir Michael Atiyah in his book review of ’A Secret Society of Mathematicians and The

Artist and the Mathematician’12,writes

So what were the basic aims of Bourbaki, and how much was achieved?

Perhaps one can pick out two central objectives. One was that mathematics

needed new and broad foundations, embodied in a series of books that

would replace the old- fashioned textbooks. The other was that the key idea

of the new foundations lay in the notion of ’structure’, illustrated by the now

common word ’isomorphism’.

There is no doubt that, with its clear emphasis on ’structure’, Bourbaki

produced the right idea at the right time and changed the way most of us

thought. Of course it fitted in well with Hilbert’s approach to mathematics

and the subsequent development of abstract algebra. But structure was not

confined to algebra, and it was particularly fruitful in topology and

11 Éléments de mathématique Théorie des ensembles, chapitres 1 à 4, 352 p., 1970 (réimpression en 1998);

Algèbre, chapitres 1 à 3, 654 p., 1970; Algèbre, chapitres 4 à 7, 432 p., 1981; Algèbre, chapitres 8, 489 p.,

2012; Algèbre, chapitre 9, 212 p., 1959 (nouveau tirage en 1973); Algèbre, chapitre 10, 224 p., 1980; Topolo-

gie Générale, chapitres 1 à 4, 376 p., 1971 (réimpression en 1990); Topologie Générale, chapitres 5 à 10,

334 p., 1974; Fonctions d’une Variable Réelle, chapitres 1 à 7, 336 p., 1976 Espaces Vectoriels Topologiques,

chapitres 1 à5, 400 p., 1981; Intégration, chapitres 1 à 4, 284 p., 1965 (nouveau tirage en 1973); Intégration,

chapitre 5, 154 p., 1967; Intégration, chapitre 6, 106 p., 1959; Intégration, chapitres 7 et 8, 222 p., 1963; Inté-

gration, chapitre 9, 134 p., 1969; Algèbre commutative, chapitres 1 à 4, 364 p., 1968 et 1969 (réimpression en

1985); Algèbre commutative, chapitre 5 à 7, 352 p., 1964et 1965 (réimpression en 1985); Algèbre commuta-

tive, chapitres 8 et 9, 208 p., 1983; Algèbre commutative, chapitre 10, 187 p., 1998; Variétés différentielles et

analytiques (fascicule de résultats), 198 p., 1971 (réimpression en 1998); Groupes et algèbres de Lie, chapitre

1, 146 p., 1971; Groupes et algèbres de Lie, chapitres 2 et 3, 320 p., 1972; Groupes et algèbres de Lie, chapitres

4 Ãă 6, 288 p., 1968 (réimpression en 1981); Groupes et algèbres de Lie, chapitres 7 et 8, 272 p., 1975 (réim-

pression en 1998); Groupes et algèbres de Lie, chapitre 9, 144 p., 1982; Théories spectrales, chapitres 1 et 2,

168 p., 1967; Éléments d’histoire des mathématiques, 376 p., 1974 (réimpression en 1984)

12 Bourbaki, A Secret Society of Mathematicians and The Artist and the Mathematician Reviewed by

Michael Atiyah, Notices of the AMS Volume 54, Number 9,October 2007
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associated areas of geometry, all of which were to see spectacular

developments in the period following World War II.

There is no doubt that Bourbaki influenced the Mathematics that was taught in schools

and the education reforms in Victoria of the period 1967 -1971 can be directly linked to

the development and influence of Bourbaki.

On this Sir Michael Atiyah 13 writes

. . . much of the critique directed against Bourbaki is that it was used, or perhaps misused,

to reform school education. This may be unfair, since many of the great mathematicians

in Bourbaki were excellent lecturers and knew well the difference between formal

exposition and the conveying of ideas. But, as so often happens, the disciples are more

extreme and fanatical than their masters, and education in France and elsewhere

suffered from a dogmatic and ill-informed attempt at reform.

Amand Borel14 was a member of the Bourbaki writing group. He finishes his article ...

with

Of course, Bourbaki has not realised all its dreams or reached all of its goals

by far. Enough was carried out, it seems to me, to have a lasting impact on

mathematics by fostering a global vision of mathematics and of its basic

unity and also by the style of exposition and choice of notation, but as an

interested party I am not the one to express a judgment.

What remains most vividly in my mind is the unselfish collaboration over

many years of mathematicians with diverse personalities toward a common

goal, a truly unique experience, maybe a unique occurrence in the history of

mathematics. The underlying commitment and obligations were assumed as

a matter of course, not even talked about, a fact which seems to me more and

more astonishing, almost unreal, as these events recede into the past.

2.3 Felix Klein 1849 -1925 and the Klein project

Before leaving the first half of the twentieth century it is appropriate to mention another

German mathematician, Felix Klein. He was interested in the education of teachers of

13 Bourbaki, A Secret Society of Mathematicians and The Artist and the Mathematician Reviewed by

Michael Atiyah,Notices of the AMS Volume 54, Number 9,October 2007

14 Amand Borel, Twenty-Five Years with Nicolas Bourbaki,Notices of the AMS Volume 45, Number3,March

1998

13



mathematics and the manner in which mathematics was taught in the schools. He

wrote a three-volume work, ’Elementary Mathematics from an Advanced Standpoint’ 15,

whose goal was to help teachers to bridge the gap between the subject matter taught at

university and the usual topics that were covered in the schools and to integrate them

into the curriculum. He was vehement in his belief in the need to strengthen those

aspects of instruction that gave students the capacity to think in three dimensions.

He promoted education in functional thinking and influenced the treatment of

differential and integral calculus as a unified topic of instruction in secondary school

Klein was the head of the International Commission on Mathematical Education and

this took his influence beyond the borders of Germany. His work also indirectly

influenced what happened in Australia. A review by G B Price 16 is worth including to

show the influence of these books.

Klein possessed in an unusual degree the abilities of a great mathematician

and the gifts of an inspiring teacher and lecturer. He had a broad knowledge

of mathematics and a correspondingly deep insight into the foundations and

interrelations of its various branches. Both Klein’s qualifications for writing a

book of this nature and the scarcity of such books combine in directing

attention to the present volume.

This book, a translation of the first of Klein’s three volumes entitled

Elementarmathematik vom höheren Standpunkte aus, is a series of lectures

that Klein gave for teachers of mathematics in secondary schools. The

material is presented under the headings of arithmetic, algebra, analysis, and

a supplement. The section on arithmetic treats the extensions of the number

system and the laws of operation, beginning with integers and ending with

complex numbers and quaternions. The treatment seeks to explain the how

and why of the subject. As an example, we note the discussion of the little

understood rule of signs: ’minus times minus gives plus.’ The section on

algebra is devoted to the solution of equations. First, some geometric

methods are explained for investigating the real roots of rational integral

equations containing parameters. Then complex roots are considered,

especially of those equations whose solutions lead to a consideration of the

groups of motions connected with the regular bodies. Free use is made of

Riemann surfaces and other parts of the theory of functions of a complex

15 Elementary Mathematics from an Advanced Standpoint. Arithmetic, Algebra, Analysis. By Felix Klein.

Translated from the third German edition by E. R. Hedrick and C. A. Noble. New York, Macmillan, 1932.

16 Bull. Amer. Math. Soc. Volume 39, Number 7 (1933), 495-496. Review: Felix Klein, Elementary Mathe-

matics from an Advanced Standpoint. Arithmetic, Algebra, Analysis
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variable. The section on analysis is devoted to the logarithmic, exponential,

and trigonometric functions, and a discussion of the infinitesimal calculus

proper. A wide variety of subjects is treated, however, in connection with these

general topics: the construction of the early logarithmic and trigonometric

tables, expansions in Fourier series, Taylor’s Theorem, and Newton’s and

Lagrange’s interpolation formulas will serve as samples.

The real excellence of the book, however, is due to certain clearly defined

characteristics of the presentation. In the first place, the historical

development of the theory is traced. This is not history for history’s sake

alone, but history as an aid to gaining a deeper insight into the present state

of the theory. In this connection it should be stated that the inductive method

of presentation is used exclusively.

Secondly, the geometric aspects of the subjects treated are emphasised. It is

significant that the book contains 125 figures. The geometric meaning of

Fermat’s Theorem is explained; the Pythagorean number triples are obtained

by a geometric method. The graphs of the approximating polynomials of

Taylor’s series expansions are drawn in order to show the nature of the

convergence and divergence; similarly for Fourier series. Klein would develop

geometric intuition and sense perception as an aid to mathematical

investigation.

Again, Klein shows the mutual relations between problems in different fields.

His ability to discover such relations is well known, and many examples are

to be found in this volume.

The Klein Project 17 which began in 2009 is a major project of the International

Mathematical Union (IMU) and the International Commission on Mathematical

Instruction (ICMI). It aims to link research mathematics with school mathematics in the

spirit of Felix Klein’s books that were published in 1908. Since then mathematics has

grown exponentially, changed under the influence of computers and new fields and

applications, adopted new approaches, and developed new concepts. The project aims

to consider the following questions:

• How can fundamental contemporary ideas in research mathematics get related to

the mathematical foundation required in today’s world?

• How has research mathematics been guided by contemporary social interests, how

might that happen in the future, and is this a good thing?

17 Klein Project, http://www.projekt.didaktik.mathematik.uni-wuerzburg.de/klein/index.html
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• What influence do contemporary trends in the discipline of mathematics have on

current secondary curricula, and what influence should it have?

• How can teachers’ mathematical knowledge be kept up to date in a world of

accelerating growth in the mathematical sciences?

• What forms of communication between researchers and teachers are optimal?

These are indeed challenging aims.

2.4 Foundations

Generally people make statements like I like mathematics because you know where you

stand – you are either right or wrong or that mathematics can provide truth and

certainty. This subsection is included to give the idea that not all is as straightforward in

mathematics as thought by all. I rely on the excellent exposition by Davis and Hersch in

’The Mathematical Experience’18.

According to naive set theory, any definable collection is a set. Let R be the set of all sets

that are not members of themselves. If R is not a member of itself, then its definition

dictates that it must contain itself, and if it contains itself, then it contradicts its own

definition as the set of all sets that are not members of themselves. This contradiction is

Russell’s paradox. Another version of it is. ’A barber in a certain town has stated that he

will cut the hair of all those those persons and only those persons in the town who do

not cut their own hair. Does the barber cut his own hair?’

When Russell communicate this it was considered to be a crisis in foundations, and

efforts were made to reformulate set theory so that Russell’s paradox could be avoided.

The work on this program played a major role in the development of logic but it failed in

its aim in find a suitable framework. There was no resolution and when Gödel proved

his incompleteness theorems in 1930 it was believed by most that any consistent formal

system strong enough to contain elementary arithmetic would be unable to prove its

own consistency. The search for secure foundations never recovered from this defeat.

There was further work on this type of result. In 1963 Paul Cohen solved one of Hilbert’s

problems but in an unexpected way by showing that within the confines of a commonly

used set of axioms for set theory the result could neither be proved or disproved. With

these and more recent results it seems to be in set theory that there is not one version

but many possible versions depending on your set of axioms.

In any discussion of the foundations of mathematics three standard dogmas are

18 Davis PJ, Hersh, R, Marchisoto EA, The Mathematical Experience, Study Edition, Birkhauser, 199.
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presented: Platonism, formalism and constructivism.

• Platonism is the metaphysical view that there are abstract mathematical objects

whose existence is independent of us and our language, thought, and practices. Just

as electrons and planets exist independently of us, so do numbers and sets. And just

as statements about electrons and planets are made true or false by the objects with

which they are concerned and these objects’ perfectly objective properties, so are

statements about numbers and sets. Mathematical truths are therefore discovered,

not invented.

• Formalism is the view that there are no mathematical objects. Mathematics just

consists of axioms, definitions and theorems. Mathematics is not a body of

propositions representing an abstract sector of reality but is much more akin to a

game. Of course the formalist knows that mathematical formulas are sometimes

applied to physical problems and if given a physical meaning it acquires a meaning

and may be true or false.

Formalists and Platonists are at opposite sides on the question of existence and reality

but they have no quarrel on what principle of reasoning should be. The actual reality for

working mathematicians is that they switch between these two views on what

mathematics is.

• Mathematical constructivism asserts that it is necessary to find or construct a

mathematical object to prove that it exists. We will not go into this here. There are

different forms of constructivism. The reality is that it is sometimes at odds with the

other two beliefs.

John Dieudonne said the following

We believe in the reality of mathematic but of course when philosophers

attack us with their paradoxes we rush to hide behind formalism and say ,

’Mathematics is just a combination of meaningless symbols’, and then we

bring out chapters 1&2 of set theory. Finally we are left in peace to go back to

our mathematics ad do as we have always done, with the feeling each

mathematician has that he is working with something real. This sensation is

probably an illusion, but is very convenient. That is Bourbakis’ attitude to

foundations.

In The Mathematical Experience the following observation is made regarding the effect

on education in schools: The aim for axiomatisation of mathematics and the formalist

view led to the unfortunate importation into primary and secondary schools during the

1960’s, of set theoretic notation and axiomatics. It was a predictable consequence of a
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philosophical doctrine: Mathematics is axiomatic systems expressed in set-theoretic

language.

Critics of formalism in high school say ’This is the wrong thing to teach and the wrong

way to teach’ Such criticism leaves unchallenged the dogma that real mathematics is

formal derivations from formally stated axioms. If this dogma rules, the critic of

formalism is seen as asking for lower quality. The fundamental question is, ’What is

mathematics?’ Controversy about high school teaching can’t be resolved without

controversy about mathematics.

2.5 Fermat’s last theorem 19

Fermat’s Last Theorem states that no three positive integers a, b, and c can satisfy the

equation an +bn = cn for any integer value of n greater than two. If n = 2 it is the

Pythagorean equation a2 +b2 = c2 which has infinitely many solutions This theorem

was conjectured by Pierre de Fermat in 1637, in the margin of a copy of the ancient

Greek book, Arithmetica, where he claimed he had a proof that was too large to fit in the

margin.

There was some progress up to the end of the twentieth century where initially the

theorem was proved in the cases for n = 3 and n = 4. By 1993 it had been proved to be

valid for all for all exponents up to 4×106 . No counterexamples had been found and

the evidence pointed towards the theorem being true. In 1993, the general theorem was

partially proven by Andrew Wiles. Unfortunately, several holes were discovered in the

proof . However, the difficulty was circumvented by Wiles and R. Taylor in late 1994 and

published in 1995

The proof of Fermat’s Last Theorem marks the end of a mathematical era. Since

virtually all of the tools which were eventually brought to bear on the problem had yet

to be invented in the time of Fermat, it is interesting to speculate about whether he

actually was in possession of an elementary proof of the theorem. Judging by the

tenacity with which the problem resisted attack for so long this is not likely.

The method used to obtain the solution is of far more importance to mathematics than

the Last Theorem itself.

Wiles result, and the work of the many other mathematicians that paved the way, is sure

to have enormous impact in many parts of mathematics.

19 There are many possible references but the following is a succinct readable article, A History of Mathe-

matics: An Introduction.Victor J. Katz, Addison Wesley Publishing Company Incorporated, 2009
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2.6 The four-colour theorem20

The four-colour theorem states that any map in a plane can be coloured using four

colours in such a way that regions sharing a common boundary (other than a single

point) do not share the same colour. The problem was first put forward in 1852. Several

proofs containing errors were presented over the next century and one of these proofs

was even accepted for ten years.

This result was finally obtained by Appel and Haken , who constructed a

computer-assisted proof that four colours were sufficient. However, because part of the

proof consisted of an exhaustive analysis of many discrete cases by a computer and it is

not accepted by some mathematicians. However, no mistakes have been found and so

the proof appears valid. A shorter, independent proof was constructed, again using a

computer, and this has been verified. The Four Colour Theorem was the first major

theorem to be proved using a computer, having a proof that could not be verified

directly by other mathematicians. Despite some worries about this initially,

independent verification soon convinced everyone that the Four Colour Theorem had

finally been proved.

A mathematical assistant was used to verify the proof. A mathematical assistant is a

computer program that a mathematician can use in an interactive way. The

mathematician provides ideas and proof steps and the computer carrying out the

computations and verification. Such systems have been under development over the

last thirty years. Other applications include checking the correctness of computer

hardware and software. With this development, it seems that computers have also

become indispensable for checking proofs! Mathematics will never be the same again.

An extensive discussion of the four-colour problem is in Keith Devlin’s book mentioned

in the footnote below.

2.7 An application in economics 21

On October 14 the Royal Swedish Academy of Sciences announced the winners of the

1997 Nobel Prize in Economics. The winners were Professor Robert C. Merton, of

Harvard University, Cambridge, USA and Professor Myron S. Scholes, of Stanford

University, Stanford, USA, for the discovery of "a new method to determine the value of

20 Mathematics: The New Golden Age, Keith Devlin,Penguin 1988.

21 Ferreyra, Guillernio. ’The Mathematics Behind the 1997 Nobel Prize in Economics.’ WhatâĂŹs New in

Mathematics 1 January 1998. 29 October 2001 <http://www.ams.org/new-in-math/black-scholesito. html>.
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derivatives". The news media had ample coverage of this announcement and of the

reason for the award to Merton and Scholes. In the words of the Swedish Academy

Robert C. Merton and Myron S. Scholes have, in collaboration with the late Fischer Black,

developed a pioneering formula for the valuation of stock options. Their methodology

has paved the way for economic valuations in many areas. It has also generated new

types of financial instruments and facilitated more efficient risk management in society.

Financial analysts have reached the point where they are able to calculate, with high

accuracy, the value of a stock option or derivative. The models and techniques employed

by today’s analysts are rooted in a model developed by Black and Scholes in 1973, which

today is known as the Black-Scholes formula.

What was little discussed in the media at the time the award was announced is the fact

that the methodology employed by Merton, Black and Scholes is heavily indebted to the

modern mathematical theory of probability. The work of the three economists in the

70’s was a novel and extremely useful application to finance of the deep mathematical

theory of stochastic processes that had culminated with the theory of stochastic

differential equations (SDE’s) less than thirty years before.

The theory of SDE’s is thriving today due to the many applications it has found in

science and engineering, from physics, genetics, and the environmental sciences to

electrical engineering and computer science, especially in the de-noising of transmitted

data.

The work in economics is just one application of this idea which was first introduced by

a Japanese mathematician in the 1940’s.

Physics and mathematics 22

As a consequence of the approach to mathematics as taken by Bourbaki and indeed a

lot of mathematicians, pure mathematicians drifted away from applications and saw no

need to collaborate with other scientists. Also the application of the highly abstract

modern mathematics could not be easily visualised by the traditional users of

mathematics. The period from the 1930’s to 1970’s saw a divergence between

mathematics and other applied sciences. Mathematics became more inward looking,

and the distinction between pure and applied mathematics became much more

pronounced. This situation reversed and often the mathematics being developed had

interaction with other disciplines.

22 Special article: Mathematics in the 20th century, Sir Michael Atiyah, Bull. London Math. Soc. 34 (2002),

London Mathematical Society
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The following is directly taken from the cited article of Sir Michael Atiyah. It contains

quite a lot of reference to specific mathematical structures and the associated physics.

However, it does give the reader some idea of the extent of this interaction with physics

in the last thirty years of the twentieth century.

Throughout history, physics has had a long association with mathematics,

and large parts of mathematics, calculus, for example, were developed in

order to solve problems in physics. In the middle of the 20th century, this had

perhaps become less evident, with most of pure mathematics progressing very

well independent of physics, but in the last quarter of this century things

have changed dramatically. Let me try to review briefly the interaction of

physics with mathematics, and in particular with geometry.

In the 19th century, Hamilton developed classical mechanics, introducing

what is now called the Hamiltonian formalism. Classical mechanics has led

to what we call ‘symplectic geometry’. It is a branch of geometry that could

have been studied much earlier, but in fact has not been studied seriously

until the last two decades. It turns out to be a very rich part of geometry.

Geometry, in the sense I am using the word here, has three branches:

Riemannian geometry, complex geometry and symplectic geometry,

corresponding to the three types of Lie groups. Symplectic geometry is the

most recent of these, and in some ways possibly the most interesting, and

certainly one with extremely close relations to physics, because of its

historical origins in connection with Hamiltonian mechanics and more

recently with quantum mechanics.

Now, Maxwell’s equations, which I mentioned before, the fundamental linear

equations of electromagnetism, were the motivation for Hodge’s work on

harmonic forms, and the application to algebraic geometry. This turned out

to be an enormously fruitful theory, which has underpinned much of the

work in geometry since the 1930s.

I have already mentioned general relativity and Einstein’s work. Quantum

mechanics, of course, provided an enormous input, not only in the

commutation relations but more significantly in the emphasis on Hilbert

space and spectral theory. In a more concrete and obvious way,

crystallography in its classical form was concerned with the symmetries of

crystal structures.

The finite symmetry groups that can take place around points were studied

in the first instance because of their applications to crystallography. In this

century, the deeper applications of group theory have turned out to have
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relations to physics. The elementary particles of which matter is supposed to

be built appear to have hidden symmetries at the very smallest level, where

there are some Lie groups lurking around, which you cannot see, but the

symmetries of these become manifest when you study the actual behaviour of

the particles. So you postulate a model in which symmetry is an essential

ingredient, and the different theories which are now prevalent have certain

basic Lie groups like SU(2) and SU(3) built into them as primordial symmetry

groups. So these Lie groups appear as building blocks of matter. Nor are

compact Lie groups the only ones that appear. Certain non-compact Lie

groups appear in physics, like the Lorentz group. It was physicists who first

started the study of the representation theory of non-compact Lie groups. . . .

In the last quarter of the 20th century, the one we have just been finishing,

there has been a tremendous incursion of new ideas from physics into

mathematics. This is perhaps one of the most remarkable stories of the whole

century. . . .

Physicists have been able to predict that certain things will be true in

mathematics based on their understanding of the physical theory. Of course,

that is not a rigorous proof, but it is backed by a very powerful amount of

intuition, special cases, and analogies. These results predicted by the

physicists have time and again been checked by the mathematicians and

found to be fundamentally correct, even though it is quite hard to produce

proofs, and many of them have not yet been fully proved. So there has been a

tremendous input over the last 25 years in this direction. The results are

extremely detailed. It is not just that the physicists said, ’This is the sort of

thing that should be true.’ They said, ’Here is the precise formula and here are

the first ten cases (involving numbers with more than 12 digits).’ They give

you exact answers to complicated problems, not the kind of thing you can

guess; things you need to have machinery to calculate. Quantum field theory

has provided a remarkable tool, which is very difficult to understand

mathematically but has had an unexpected bonus in terms of applications.

This has really been the exciting story of the last 25 years.

2.8 Summary

The changes in secondary mathematics education in the latter part of the twentieth

century in someways move in alignment with the developments in mathematics and

statistics. We started with teaching calculus together with mechanics and the

understanding of the relationship between mathematics and physics (See section 6).

This is pedagogically sound but of course there is the drawback that mechanics is not
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popular with every section of the population and therefore could exclude some people.

Anyone who has taught differential calculus at school knows that it is a opportunity to

draw together ideas in geometry, algebra and motion in a straight line and can see

students responding to the different aspects.The work of Klein and others could have

possibly influenced these decisions.

There isn’t a doubt that the thoughts of Hilbert and Bourbaki influenced the changes in

Victoria in the 1970’s. There were some very positive aspects of those changes and

because of this these changes remain today. This is also discussed in section 6. The

tension between Platonism and formalism is also relevant in thinking about these times.

The growing importance of probability and statistics was recognised and these were

introduced into our curriculum and an expansion of these areas in our curriculum is

being considered at present.

The move into problem solving and modelling in the 1990’s and onto today is paralled

by the interaction between different fields of mathematics and the interaction between

mathematics and other disciplines.

It would neglectful if we didn’t mention the book of the mathematician George Polya

’How to solve it’23. It first appeared in 1945 and its influence grew steadily in the second

half of the twentieth century and certainly influenced what happened in Victoria from

the 1990’s.

Sir Michael Atiyah 24 gave the following summary of mathematics in the twentieth

century:

The 18th and 19th centuries together, were the era of what you might call

classical mathematics, the era we associate with Euler and Gauss, where all

the great classical mathematics was worked out and developed. You might

have thought that would almost be the end of mathematics, but the 20th

century has, on the contrary, been very productive indeed. The 20th century

can be divided roughly into two halves. I would think the first half was

dominated by what I call the ‘era of specialisation’, the era in which Hilbert’s

approach, of trying to formalise things and define them carefully and then

follow through on what you can do in each field, was very influential.

Bourbaki’s name is associated with this trend, where people focused

23 How to Solve It: A New Aspect of Mathematical Method G. Polya With a foreword by John Conway One of

Princeton University Press’s Notable Centenary Titles,2014

24 Special article: Mathematics in the 20th century, Sir Michael Atiyah, Bull. London Math. Soc. 34 (2002),

London Mathematical Society
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attention on what you could get within particular algebraic or other systems

at a given time.

The second half of the 20th century has been much more what I would call

the ‘era of unification’, where borders are crossed over, techniques have been

moved from one field into the other, and things have become hybridised to an

enormous extent.

2.8 Statistics in the twentieth century 2526

The late part of the nineteenth century saw the bringing together of some statistical

ideas in England. The measurements that generated the concepts were those of

heredity and biometrics. The key statistical ideas of correlation and regression were

developed at this time.The chi-squared test was developed by Karl Pearson (1900). This

was a tremendously important piece of work,and is still being used extensively.The

Department of Applied Statistics at University College in London was founded in 1911

by Karl Pearson, and was the first university statistics department in the world.

R. A. Fisher, also of England, created the foundations of much of modern statistics

including the beginning of population genetics. He established methods for the analysis

of complex experiments, now called ’analysis of variance’, which are used thousands of

times each day by scientists around the globe. He showed that a function he called the

likelihood could be used to develop optimal estimation and testing procedures in

almost any probability model. He founded and developed the main ideas in the design

of experiments.

Fisher had a tremendous statistical intuition. A lot of the work in statistics in the

twentieth followed on from his work.

Work by Pearson and others developed the theory of hypothesis testing and this became

the foundation of research in this area for the remainder of the twentieth century.

Other important advances of the past century came in the area of modelling and

estimation, where methods were developed that expanded the horizon of possible

models and widened the range of validity of statistical procedures.

25 A Report on the Future of Statistics Author(s): Bruce G. Lindsay, Jon Kettenring, David O. Siegmund

Source: Statistical Science, Vol. 19, No. 3, (Aug., 2004), pp. 387-407 Published by: Institute of Mathematical

Statistics

26 A History of Mathematics: An Introduction.Victor J. Katz, Addison Wesley Publishing Company Incorpo-

rated, 2009
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There was also expansion of large sample theory, the study of the distributional

properties of statistical procedures when the sample sizes are large. Accurate measures

of uncertainty are the key components of statistical inference and large sample

methods have enabled statisticians to calculate excellent approximations to these

measures in a very wide range of problems.

Beginning in the 1970’s, a major revolution in science occurred; it was destined to

change the face of statistics forever. The computer has changed completely what it

means to carry out a statistical analysis. It has also changed the facility with which one

can collect and store data.

3. Twenty First Century Mathematics

This section is divided into three subsections.

• 3.1 The Millenium problems. Seven problems were chosen by the Clay Institute to

mark the beginning of the twentieth century

• 3.2 Workshop on directions. A group of eminent mathematicians came together in

2012 to discuss what had happened of importance in the previous decade and what

is going to be important in the future.

• 3.3 Computing and pure mathematics

3.1 The Millenium Problems27

In order to celebrate mathematics in the new millennium, The Clay Mathematics

Institute of Cambridge, Massachusetts (CMI) established seven Prize Problems28

The prizes were announced at a meeting in Paris, held on May 24, 2000 at the Collège de

France. Three lectures were presented: Timothy Gowers spoke on The Importance of

Mathematics; Michael Atiyah and John Tate spoke on the problems themselves.

It is of note that one of the seven Millennium Prize Problems, the Riemann hypothesis,

formulated in 1859, also appears in the list of twenty-three problems discussed in the

27 http://www.claymath.org/millennium-problems

28 The seven problems are: Yang-Mills and Mass Gap Experiment, Riemann Hypothesis, P vs NP problem,

Navier-Stokes Equation, Hodge conjecture, Poincaré conjecture and the Birch and Swinnerton-Dyer con-

jecture
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address given in Paris by David Hilbert on August 9, 1900. We quote from a review of

Keith Devlin’s book which appeared in the London Review of books. 29

The Reimann hypothesis

Formulated in 1859 by Bernhard Riemann, the hypothesis concerns the

distribution of primes among the positive integers. (A prime is any positive

integer, other than 1, that is divisible only by itself and 1. The first ten primes

are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29.) There are infinitely many primes, but

they get rarer and rarer as the sequence of positive integers extends further

and further. Thus, of the first eight positive integers, half are primes, but of

the first hundred only a quarter are, and of the first million only about one in

thirteen are. This raises the question of whether there is anything significant

to be said about the precise way in which the proportion gradually decreases.

Both the early pattern of primes and what we know about later patterns are

discouraging. For instance, the gaps between the first ten primes are 1, 2, 2, 4,

2, 4, 2, 4 and 6, a series which does not exhibit any obvious regularity.

Furthermore, no matter how far out along the [positive integers] you go, you

can find clusters of several primes close together as well as stretches as long as

you like in which there are no primes at all. The distribution of primes is the

part of mathematics with the greatest feel of contingency about it: primes

seem to crop up at random, like rocks scattered on a barren landscape. Yet

mathematicians have achieved some understanding of the way in which the

proportion of primes decreases. (This understanding draws on a branch of

mathematics that appears totally unrelated to the theory of positive integers

but is concerned, instead, with the continuous variation of one quantity with

respect to another.) There remain significant lacunae, however, and a proof

that the Riemann Hypothesis is true would help to fill them. It might also

have implications for both physics and communications technology.

P vs NP

A second problem, which may be the most accessible, is called the P v. NP

Problem. Computer scientists distinguish two types of task that can be

undertaken by a computer. Tasks of type P can be undertaken ’efficiently’.

Tasks of type E, by contrast, require a certain amount of ineliminable slog: it

is impossible for a computer to carry out even a very simple task of type E

without taking many more steps than there are atoms in the known universe.

29 Review in the London review by A.W. Moore Vol. 26 No. 14-22 July 2004 The Millennium Problems: The

Seven Greatest Unsolved Mathematical Puzzles of Our Time by Keith Devlin, Vol. 26 No. 14 - 22 July 2004
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But there is a third type of task, type NP, which includes most of the big tasks

that industry and commerce would like computers to be able to do. A task of

type NP can be undertaken efficiently by a computer as long as, at certain

critical stages at which the computer requires the answer to a question, it is

given the answer rather than having to work it out for itself. (Of course, this is

primarily of theoretical interest. In practice, there would always be the

question of where the answer came from.) If a computer were blessed with

this facility, would the range of tasks that it could undertake efficiently be

significantly increased? One would think so. But perhaps not. Perhaps all

tasks of type NP are in fact of type P. That is, perhaps the efficiency that would

accrue from these ready-calculated answers can accrue anyway, from

suitably clever programming. The P v. NP Problem is to determine whether

or not this is so. A proof that it is so would have repercussions for industry,

commerce and internet security.

A third problem, the Poincaré conjecture which was posed in 1904 by Henri Poincaré

was solved in 2010. The solution of this problem seems to have produced results which

will inevitably flow into onto areas.

We will not expand on the other problems because of the difficulty in conveying any

idea of their significance to all but a few.

3.2 Workshop on Future Directions in Mathematics 30

A report published in 2012 from a workshop on Future Directions in Mathematics,

sponsored by the Office of the Assistant Secretary of Defense for Research and

Engineering (ASD(R and E)) gives us an overview of new directions in mathematics and

will be the springboard for presenting what is happening in mathematics.

From the Executive Summary:The goals of the workshop were to provide

input to the ASD(R and E) on the current state of mathematics research, the

most promising directions for future research in mathematics, the

infrastructure needed to support that future research. ...... The invited

mathematical scientists came from universities and industrial labs, and

included mathematicians, statisticians, computer scientists, electrical

engineers and mechanical engineers. This group consisted of established

30 Report from the Workshop on Future Directions in Mathematics, Institute for Pure and Applied Mathe-

matics University of California, Los Angeles February 8, 2012
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leaders in various fields of mathematics, and brilliant young researchers

representing recent breakthroughs and future directions....

The participants agreed that the main body of the report should consist of 5 sections:

• Drivers for mathematics; i.e., developments outside of mathematics that influenced

mathematics over the last decade

• Recent accomplishments; i.e., the major achievements in mathematics over the past

decade

• Future directions; i.e., their best prediction for the most important achievements in

mathematics over the next decade

• Infrastructure; i.e., the infrastructure requirements for supporting those future

achievements

• International developments; i.e., a critical comparison of mathematics in the US and

around the world.

We will expand on the first three dot points in the following paragraphs.

The Drivers for mathematics

The participants identified 6 main drivers for mathematics in the twenty first century:

• Computing

• Big data

• Increasing complexity

• Uncertainty and risk

• Rise of interdisciplinary

research

• Connectedness

Recent accomplishments

The participants identified important accomplishments over the last decade in 7 areas

of mathematics

• Information science

• Discrete mathematics

• Computation

• Bioinformatics

• Optimization and

control

• Nanoscale systems

• Partial differential

equations and

randomness

Future directions

The participants expect to see great progress over the next decade in 7 areas of

mathematics:
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• Mathematics of physical

systems

• Mathematical Modelling

• Simulation

• Information science

• High dimensionality

and large data sets

• Imaging

• Computational and

statistical reasoning

In the following the explanations of the above dot points are often directly from the

report.

3.2.1 Drivers for Mathematics

Mathematics has changed significantly over the last two decades. Within the discipline,

there has been a blurring of the line between pure mathematics and applied

mathematics, as well as development of interactions between many different

mathematical fields. At the same time, interactions between mathematicians (both

pure and applied) and scientists have greatly increased. These trends are expected to

continue, with important new developments in many fields.

Computing

Much of the recent impetus for mathematics has come from the growth in computing

power and in computer networking. The increase in both the availability and the need

for computing power has led to development of new computer architectures, new

computational algorithms and new computational models. Sophisticated mathematics

has been required for analysis of these new computational models and algorithms. One

example is quantum computing – the understanding of which has relied on insights

from mathematics to a greater extent than classical computing. Meanwhile, though, the

state-of- the-art classical algorithms, even for purely combinatorial problems, have

developed an increasingly analytic flavour, so that continuous mathematics has

become more and more widespread in the theory of classical computing as well. Many

of the other drivers listed above are instigated or enabled by the growth in computing

and networking.

Big Data

See Section 4

Increasing complexity

Complexity and its significance have been growing in systems of all types. This includes

engineered systems such as the internet and the power grid; social systems such as the

financial system and social networks; natural systems such as the global climate system

and the global ecological system; and mathematical systems such as large scale graphs
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and multiscale models. This increased complexity requires new approaches to

mathematical modelling, new computational algorithms, and new methods of analysis.

Uncertainty and risk

Uncertainty is an essential feature of many systems. While it has always been present,

uncertainty has become more important in many systems because of their increased

size and complexity. Examples include: climate for which uncertainties in modelling

(e.g., for clouds and for ocean/atmospheric interactions) can make a significant

difference in the severity of global warming predictions; the power grid in which small

random disruptions can cascade into large systemic power outages; and financial

systems, in which risk has long been a central feature but recent examples of financial

contagion and collapse demonstrate that current models of risk and techniques for

managing risk are not sufficient. (See also section 4)

Rise of interdisciplinary research

Many of the most interesting developments in science and technology over the last two

decades have been interdisciplinary, including nanoscience, bioinformatics and

sustainability (e.g., climate, environment, energy).

Connectedness

Highly connected systems are proliferating, such as networked sensors and actuators,

mobile devices and distributed surveillance. They share a communications resource

(and sometimes a computing resource) and occupy a dynamically evolving

environment including varying priorities of needs.

3.2.2 Recent accomplishments

The expansion of the dot points on recent accomplishments becomes quite technical in

its language and we only outline a few. What is clear is that there is a blending of

mathematical ideas and techniques. Statistical and probabilistic techniques blend with

mathematical analysis. Graph theory, forming algorithms and seeking more efficient

algorithms is a recurrent idea. The use of partial derivatives tat build from elementary

calculus is still prominent.

INFORMATION SCIENCE

Compressed Sensing

Many large datasets have a sparse representation, in the sense that the number of

significant features in the data is much smaller than the size of the dataset. Compressed

sensing provides a method to take advantage of this sparsity; for example, a method for
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reconstruction of the full large dataset from a number of measurements that is only

logarithmically larger than the small number of features. By its combination of

harmonic analysis, probability and numerical analysis, compressed sensing epitomizes

the new applications of pure mathematics and the interdisciplinary interactions

between areas of mathematics. More generally, compressed sensing has inspired the

use of sparsity and order reduction in many other areas of mathematics, science, and

engineering.

Partial differential equations and stochastic methods for imaging and
animation

Automated analysis of images and extraction of features have become important

because of the proliferation of imaging. Great progress in image analysis and

manipulation of images has been achieved through the use of variational principles and

PDEs. For example, PDEs that sharpen interfaces have been used for denoising, and

numerical methods based on PDEs have proven to be robust and stable. More recently,

non-PDE methods, such as the method of nonlocal means, have been surprisingly

successful at image restoration and other imaging tasks such as dictionary based

processing. For problems such as oil exploration, the resulting images are dominated by

noise; e.g., due to fluctuations in the material properties such as the sound speed.

Methods based on stochastic analysis have been successful at extracting features in

these problems.

Efficient search algorithms, using graph theory 31

The emergence of the Web and online social systems give graph theory an important

new application domain. We live in a highly interconnected world. Small world

phenomena have fascinated the public imagination for many years. With the increased

ease of communication, this is true today more than ever. Recent study has found that

the average distance between members of the social network Facebook, that contains

roughly half of the world’s population above the age of 13, is 4.74. This connectedness

and network structure is not limited to our social network, but affects almost all aspects

of our lives, including financial networks and the web. Large networks increasingly

tightly connect our technological and economic systems. Such networks provide great

opportunities, but also provide great challenges. The sheer size of these networks makes

it hard to study them.

DISCRETE MATHEMATICS

31 See AMSI publication and video on Google Page Rank http://www.amsi.org.au/ESA_Senior_Years/media/Google_PageRank.html
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Prime progressions32

This is particularly interesting as it refers to the work of the Australian Field’s Medallist

Terry Tao who was a participant in this meeting.

God may not play dice with the universe, but something strange is going on

with the prime numbers. (Paul Erdös, 1913-1996)

The field referred to as additive/arithmetic combinatorics came to international

attention with the celebrated Green-Tao theorem on long arithmetic progressions of

primes in 2004. A prime progression is a sequence of prime numbers p1, p2, . . . , pL such

that the difference between any two successive primes pi and pi+1 is equal to the same

number K ; i.e.,pi+1 −pi = K for any i . The Green-Tao Theorem says that for any L and

M (no matter how large), there is a prime progression with parameters K and L, for

some K > M . The proof of this result used number theory, combinatorics, probability

and analysis. Since 2004 the ideas and techniques have spread in many different

directions, touching not only on number theory, combinatorics, harmonic analysis and

ergodic theory, but also on geometric group theory, theoretical computer science,

model theory, point set topology and other fields. A better name for the field might now

be ’approximate structures’. In any case, it is clear that the algebraic, combinatorial and

probabilistic aspects of very large structures (e.g., graphs, networks and matrices) have

become a topic of great interest and wide applicability.

We also note that two other longstanding conjectures for primes have recently been

resolved33

The first of the two latest results concerns what is known as the twin prime conjecture,

which posits that primes just two apart - 3 and 5, 11 and 13, 17 and 19, 41 and 43, and so

on - continue to appear indefinitely. Numerical searches appear to confirm the

conjecture and mathematicians generally believe that it is true.

But on May 13, Yitang (Tom) Zhang of the University of New Hampshire, Durham,

announced a proof that there are infinitely many prime numbers separated by less than

70,000,000.

Clearly, 70,000,000 is not two, but Zhang’s is the first result to establish any finite bound

at all.

32 For a very practical application of primes see the AMSI publication and video

http://www.amsi.org.au/ESA_Senior_Years/media/Cryptography.html

33 Jonathan Borwein and David Bailey, 3 June 2013, The Conversation, You wait ages for number theory

results, then two come at once
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By the end of May 201334, mathematicians had uncovered simple tweaks to Zhang’s

argument that brought the bound below 60 million. A May 30 blog post by Scott

Morrison of the Australian National University in Canberra ignited a firestorm of

activity, as mathematicians vied to improve on this number, setting one record after

another. By June 4, Terence Tao of the University of California, Los Angeles, a winner of

the Fields Medal, mathematics’ highest honour, had created a ’Polymath project,’ an

open, online collaboration to improve the bound that attracted dozens of participants.

For weeks, the project moved forward at a breathless pace. ’At times, the bound was

going down every thirty minutes,’ Tao recalled. By July 27, the team had succeeded in

reducing the proven bound on prime gaps from 70 million to 4,680.

Now, a preprint posted to arXiv.org on November 19 by James Maynard, a postdoctoral

researcher working on his own at the University of Montreal, has upped the ante. Just

months after Zhang announced his result, Maynard has presented an independent

proof that pushes the gap down to 600. A new Polymath project is in the planning

stages, to try to combine the collaboration’s techniques with Maynard’s approach to

push this bound even lower.

’The community is very excited by this new progress,’ Tao said.

Polymath is available on line at

http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes

The second result concerns what’s known as the Goldbach conjecture, which in its

strong form is that every even number greater than two is the sum of two primes, and in

its weak form that every odd number greater than five is the sum of three primes. Note,

for instance, that 13 = 3+5+5 and 36 = 17+19.

As with the twin-prime scenario, these conjectures have been studied in great detail,

both mathematically and numerically, and are generally thought to be true, but there

had been no proof of either.

On the same day as the twin-prime announcement, Harald Helfgott, a 35-year-old

mathematician at the École Normale Supérieure in Paris, announced a proof of the

weak Goldbach conjecture.

Lattice based cryptography

Over the past decade, a new type of public-key cryptography has emerged, whose

security is based on the presumed intractability of finding a ’good’ basis for a

34 Together and alone, closing the prime gap, Quanta Magazine November 2013

33



high-dimensional lattice (where ’good’ means that the basis vectors are short).

Compared to currently-popular publickey cryptosystems, such as RSA and

Diffie-Hellman, lattice-based cryptography promises advantages. as far as anyone

knows today, lattice-based cryptography would remain secure even against attacks by

quantum computers. Second, the encryption and decryption functions in lattice-based

cryptography are remarkably simple mathematically – basically amounting to a

matrix-vector multiply, plus addition or subtraction of a small error term. The study of

lattice-based cryptography has led to many beautiful mathematical ideas – and

strangely, understanding the security even of ’classical’ lattice-based systems has often

required arguments and assumptions involving quantum computation.

Under the heading of Discrete mathematics other topics expanded on were

Deterministic primality testing and The Langlands program

PARTIAL DIFFERENTIAL EQUATIONS AND RANDOMNESS

Poincaré conjecture35

In 2002-03, Grigoriy Perelman presented a proof of the Poincaré Conjecture that every

simply connected, closed 3-manifold is homeomorphic to the 3-sphere. His proof was

based on the Ricci-flow method developed by Hamilton. In spite of some initial

controversy about the proof, its correctness and full credit to Perelman are now well

settled. This was the first solution to one of the seven Millennium Prize Problems from

the Clay Mathematics Institute.

Under the heading of Partial Differential Equations and randomness other topics

expanded on were Schramm-Loewner evolution and Compactness and regularization

in PDEs and statistical physics

COMPUTATION

Computational mathematics involves mathematical research in areas of science where

computing plays a central and essential role, emphasising algorithms, numerical

methods, computational discrete mathematics, including number theory, algebra and

combinatorics, and related fields such as stochastic numerical methods.

It is appropriate here to mention the work of Arthur Engel a German mathematician

who has been interested in teaching mathematics in schools. Echoing Klein’s title he

wrote ’Elementary Mathematics from an Algorithmic Standpoint’36. He also wrote a

35 Mathematics: The New Golden Age, Keith Devlin,Penguin 1988

36 Elementary mathematics from an algorithmic standpoint, Arthur Engel, Keele Mathematical Education
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much more easily accessible book ’Exploring Mathematics with your computer 37

.Engel had the insight that with computers and calculators widely available, students

would no longer accept rote learning of algorithms that could be executed

mechanically. He proposed that mathematics in schools should instead focus on the

concept of the algorithm, and the syllabus should be completely revised to take an

"algorithmic standpoint". His proposed approach would focus on construction and

testing of algorithms rather than their execution.

Fast Multipole Methods and analysis-based fast algorithms

The last decade has seen the emergence of analysis-based fast algorithms as a broad

generalization of the Fast Multipole Method (FMM) (developed in the 1980s for

electrostatic and acoustic applications). FMM-based schemes are now in wide use in

stealth modelling, in the chip industry, and in quantum chemistry. Previously

intractable problems with millions or billions of unknowns can now be solved routinely

using FMM-accelerated iterative schemes.

Shor’s algorithm and quantum information science

In 1994, Shor discovered a remarkable algorithm for factoring integers efficiently using a

quantum computer. The factoring problem is important not only because it resisted an

efficient classical solution for millennia, but because since the 1980s, its conjectured

hardness has been the basis for almost all cryptography used on the Internet. Shor’s

algorithm provided the first convincing evidence that quantum computers could

actually help in solving a practical problem-other than the simulation of quantum

mechanics itself.

Randomized methods

Compressed sensing and similar computations depend on randomized numerical

linear algebra methods. This is not Monte Carlo; randomness is required so that the

numerical basis elements have nontrivial intersection with the basis elements in the

sparse representation. This has opened up a new field of numerical linear algebra and

many open problems remain, such as construction of high order randomized methods.

BIOINFORMATICS

Publications, 1984

37 Exploring Mathematics with Your Computer. Washington, DC: Mathematical Association of America

1993

35



Sequencing algorithms for genomics

Dramatic advances in massively parallel sequencing technology during the past few

years have resulted in a growth rate of genomic sequence data that is faster than Moore’s

law 38. Our ability to extract useful information from this massive accumulation of

fundamental genetic data hinges on the availability of efficient algorithms for sequence

alignment/assembly, and statistical methods for the modelling of sequence variations

and the correlation with phenotypic data.

OPTIMISATION AND CONTROL

Game theoretic management of networks

In settings ranging from the Internet architecture to global financial markets,

interactions happen in the context of a complex network. The most striking feature of

these networks is their size and global reach: they are built and operated by people and

agents of diverse goals and interests, i.e., diverse socioeconomic groups and companies

that each try to use a network to their advantage. Much of today’s technology depends

on our ability to successfully build and maintain systems used by such a diverse set of

autonomous users, and to ensure that participants cooperate despite their diverse goals

and interests. Such large and decentralised networks provide amazing new

opportunities for cooperation, but they also present large challenges. Game theory

provides a mathematical framework that helps us understand the expected effects of

interactions, and develop good design principles for building and operating such

networks. In this framework we think of each participant as a player in a

non-cooperative game. In the game each player selects a strategy, selfishly trying to

optimise his or her own objective function. The outcome of the game for each

participant depends, not only on his own strategy, but also on the strategies chosen by

all other players. Mechanism theory deals with the setting of objective or payoff

functions for the players of a game. These rules inherently reward efficient behaviour

and punish errant actions by individual players. Game theory more widely deals with

the concepts of cooperative or competitive dynamics and of equilibria and strategy.

This emerging area is combining tools from many mathematical areas, including game

theory, optimisation, and theoretical computer science.

Nanoscale systems

Nanoscale systems present a number of important challenges to mathematics and

science. They are maximally complex in that they involve both quantum and classical

38 Moore’s Law is a computing term which originated around 1970; the simplified version of this law states

that processor speeds, or overall processing power for computers will double every two years.
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physics, as well as 11 continuum, atomistic and n-body phenomena The term

nanoscale refers to structures that can be measured in nanometers (one billionth of a

meter or 0.000000001 meters), from the atomic scale (angstroms) to the cellular scale

(tens of microns.) A single nanometer is approximately one hundred thousand times

smaller than the thickness of a human hair. Many outstanding problems in nanoscale

science concern phenomena in the size-range between 1 and 100 nanometers, and

these problems are a major focus of CNS efforts.

Nanoscale Systems are a set of nanoscale components or structures working together to

serve a purpose or function. These systems may be in the form of materials, sensors,

devices or experimental constructions for the measurement of fundamental physical,

chemical or biological properties. Improved understanding of phenomena on the

nanoscale is crucial for many areas of science and technology. Progress in nanoscale

systems will be essential for advances in medicine, biology, and environmental science,

as well as in materials science and computer technology.

3.3 Computing and pure mathematics

In the above we talked about the four-colour problem and its proof and the verification

of the proof using computer techniques. Another very old problem has recently been

solved and the proof accepted. This is the problem of stacking spheres39.

The problem is a puzzle familiar to greengrocers everywhere: what is the best way to

stack a collection of spherical objects, such as a display of oranges for sale? In 1611

Johannes Kepler suggested that a pyramid arrangement was the most efficient, but

couldn’t prove it.

Thomas Hales first presented a proof that Kepler’s intuition was correct in 1998.

Although there are infinite ways to stack infinitely many spheres, most are variations on

only a few thousand themes. Hales broke the problem down into the thousands of

possible sphere arrangements that mathematically represent the infinite possibilities,

and used software to check them all.

But the proof was a 300-page monster that took 12 reviewers four years to check for

errors. Even when it was published in the journal Annals of Mathematics in 2005, the

reviewers could say only that they were "99 per cent certain" the proof was correct.

In 2003, Hales started the Flyspeck project, an effort to vindicate his proof through

39 http://www.newscientist.com/article/dn26041-proof-confirmed-of-400yearold-fruitstacking-

problem.html.VAESF5W9KHk
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formal verification. His team used two formal proof software assistants called Isabelle

and HOL Light, both of which are built on a small kernel of logic that has been intensely

scrutinised for any errors - this provides a foundation which ensures the computer can

check any series of logical statements to confirm they are true.

Recently, the Flyspeck team announced they had finally translated the dense

mathematics of Hale’s proof into computerised form, and verified that it is indeed

correct.

Experimental Mathematics - David Bailey/Jonathan Borwein/ and others

Over the past 25 years, experimental mathematics has developed as an important

additional arrow in the mathematical quiver. Many mathematical scientists now use

powerful symbolic, numeric and graphic (sometimes abbreviated "SNAG") computing

environments in their research, in a remarkable departure from tradition. While these

tools collectively are quite effective, challenges remain in numerous areas, including:

• rapid, high-precision computation of special functions and their derivatives;

• user-customisable symbolic computing;

• graphical computing;

• data-intensive computing;

• large-scale computing on parallel and GPU architectures (including algorithm and

software design for such systems).

In their paper ’Exploratory Experimentation and Computation’40 David Bailey and

Jonathan Borwein argue that computers can be useful even essential in mathematics

research but as yet this has not been transferred into every part of the discipline. By

experimental mathematics they intend

1 gaining insight and intuition;

2 visualizing math principles;

3 discovering new relationships;

4 testing and especially falsifying conjectures;

5 exploring a possible result to see if it merits formal proof;

6 suggesting approaches for formal proof;

7 computing replacing lengthy hand derivations;

40 Exploratory Experimentation and Computation, David H. Bailey and Jonathan M. Borwein, Notices of

the AMS, Volume 58, Number 10, November 2011
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8 confirming analytically derived results.

Of these items, (1) through (5) play a central role, and (6) also plays a significant role for

us but connotes computer-assisted or computer-directed proof.

They speak of using such packages as Maple, Mathematica and MATLAB, general

purpose programming languages, internet based applications such as Sloane’s

encycopeaia of integer sequences and internet databases and facilities.

4. Contemporary applications

4.1 .Areas of Mathematics with many immediate applications

As we have seen there are many contemporary applications of mathematics. in this

subsection we look at probability, statistics and operations research. In many ways this

section is a reiteration of the ideas of previous sections.

4.1.1 Probability

Probability is an area of growing importance. Its applications are many. Some are listed

here.

• The probabilistic understanding of processes in Biology such as genetic inheritance,

evolution, and epidemics, has been essential for scientific progress for more than 100

years. The recent explosion in the amount of data from genome projects and other

sources, such as microarray experiments, has led to the need for new probability

models to understand both the structure of the data and the underlying biology.

• Impressive progress on problems in mathematical physics has recently been made

based on modern probabilistic methods.

• The application of probability to finance has revolutionised an industry. In the past

twenty years, the creation of multitrillion dollar derivative security markets has

facilitated the worldwide flow of capital and thereby enhanced international

commerce and productivity. Without the probabilistic models that provide reliable

pricing of derivative securities and guide the management of associated risk, these

markets could not exist.

• In computer science, randomised algorithms enable the solution of complex

problems that would otherwise be inaccessible. Probability theory provides an

essential framework for mathematically interpreting and predicting the behaviour of

complex networks. These include both human designs such as the Internet, power
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networks, wireless communication, and modern manufacturing systems, as well as

natural geophysical systems such as seismic, climatic and hydrologic systems.

• Stochastic reasoning appears central to understanding how spoken language and

visual images are interpreted by the mind and is arguably the dominant approach for

machine interpretation, for instance for constructing algorithms to recognise

speech, identify objects in images and retrieve information from massive data sets.

In particular Statistics and Probability are and have always been inextricably linked.

4.1.2 Statistics and big data

The applications of statistics in the world today are many. The following are some of the

many areas of application. Agriculture, Animal Population, Astronomy, Biology, Census,

Chemistry, Computer Science, Demography, Ecology, Economics, Education,

Engineering, Epidemiology, Finance, Forestry, Genetics, Government, Health Science,

Insurance, Law, Manufacturing, Marketing, Medical Clinical Trials, Medicine, National

Defence, Pharmacology, Physics, Political Science, Psychology ,Public Health, Safety,

Science Writing and Journalism, Sociology, Sports, Survey Methods,

Telecommunications, Transportation, Zoology

Big Data41

The following comes from the abstract of the paper by Jianqing Fan, Fang Han and Han

Liu. The first and last of these authors are from the Department of Operations Research

and Financial Engineering, Princeton University and the second from the Department

of Biostatistics, Johns Hopkins University.

Big Data bring new opportunities to modern society and challenges to data

scientists. On the one hand, Big Data hold great promises for discovering

subtle population patterns and heterogeneities that are not possible with

small-scale data. On the other hand, the massive sample size and high

dimensionality of Big Data introduce unique computational and statistical

challenges, including scalability and storage bottleneck, noise accumulation,

spurious correlation, (incidental endogeneity) and measurement errors.

These challenges are distinguished and require new computational and

statistical paradigm.. . .

Areas of sources of big data include:

41 Challenges of Big Data analysis, National Science Review Advance Access published February 6, 2014

Jianqing Fan, Fang Han and Han Liu
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Genomics Genomics is a discipline in genetics uses probability and statistics

(bioinformatics) to sequence, assemble, and analyse the function and structure of

genomes(the genetic material of an organism).

Many new technologies have been developed in genomics These technologies allow

biologists to generate hundreds of thousands of datasets and have shifted their primary

interests from the acquisition of biological sequences to the study of biological

function. Thee availability of massive datasets sheds light towards new scientific

discoveries. For example, the large amount of genome sequencing data now make it

possible to uncover the genetic markers of rare disorders and associations between

diseases and rare sequence variants.

Neuroscience Many diseases, including Alzheimer’s disease, Schizophrenia,

,Depression and Anxiety, have been shown to be related to brain connectivity networks.

Understanding the hierarchical, complex, functional network organization of the brain

is a necessary first step to explore how the brain changes with disease. Rapid advances

in neuroimaging techniques provide great potential for the study of functional brain

networks, i.e. the coherence of the activities among different brain regions. The data

from such techniques are massive and very high dimensional.

Economics and finance Corporations are adopting the data-driven approach to

conduct more targeted services, reduce risks and improve performance. They are

implementing specialized data analytics programs to collect, store, manage and analyse

large datasets from a range of sources to identify key business insights that can be

exploited to support better decision making. For example, available financial data

sources include stock prices, currency and derivative trades, transaction records,

high-frequency trades, unstructured news and texts, consumers’ confidence and

business sentiments buried in social media and internet, among others. It requires

professionals who are familiar with sophisticated statistical techniques.

Other applications Social media and the Internet contain massive amount of

information on the consumer preferences, leading economics indicators, business

cycles, and the economic and social states of a society. It is anticipated that the social

network data will continue to explode and be exploited for many new applications.

Several other new applications that are becoming possible in the Big Data era include:

• Personalised services. With more personal data collected, commercial enterprises

are able to provide personalised services adapt to individual preferences. For

example, Target (a retailing company in the United States) is able to predict a

customer’s need by analysing the collected transaction records.

• Internet security. When a network-based attack takes place, historical data on

network traffic may allow us to efficiently identify the source and targets of the

attack.
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• Personalised medicine. More and more health related metrics such as individual’s

molecular characteristics, human activities, human habits and environmental

factors are now available. Using these pieces of information, it is possible to

diagnose an individual’s disease and select individualised treatments.

• Digital humanities. Nowadays many archives are being digitised. For example,

Google has scanned millions of books and identified about every word in every one

of those books. This produces massive amount of data and enables addressing topics

in the humanities, such as mapping the transportation system in ancient Roman,

visualising the economic connections of ancient China, studying how natural

languages evolve over time, or analysing historical events.

4.1.3 Operations Research

Operations Research (O.R.) is a discipline that deals with the application of advanced

analytical methods to help make better decisions. The terms management science and

analytics are sometimes used as synonyms for operations research.

Employing techniques from other mathematical sciences, such as mathematical

modelling, statistical analysis, and mathematical optimisation, operations research

arrives at optimal or near-optimal solutions to complex decision-making problems.

Operations research overlaps with other disciplines, notably industrial engineering and

operations management. It is often concerned with determining a maximum (such as

profit, performance, or yield) or minimum (such as loss, risk, or cost.)

Operations research encompasses a wide range of problem-solving techniques and

methods applied in the pursuit of improved decision-making and efficiency, such as

simulation, mathematical optimisation, queuing theory, Markov decision processes,

economic methods, data analysis, statistics, neural networks, expert systems, and

decision analysis. Nearly all of these techniques involve the construction of

mathematical models that attempt to describe the system.

Because of the computational and statistical nature of most of these fields, O.R. also has

strong ties to computer science. Operations researchers faced with a new problem must

determine which of these techniques are most appropriate given the nature of the

system, the goals for improvement, and constraints on time and computing power.

The major sub-disciplines in modern operations research are:

• Computing and information

technologies

• Environment, energy, and natural

resources

• Stochastic models

• Financial Engineering
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• Manufacturing, service science, and

supply chain management

• Marketing Science modelling and

public sector work

• Revenue management .

4.2 Some areas where mathematics is being applied today

All the way through this paper we have spoken of the applications of mathematics. The

public is not generally aware of where it is being used. We have spoken briefly about the

interaction between computing and mathematics. It is also used by firms such as

Google.

There is a wide variety of Mathematics used at Google. For example Linear Algebra in

the PageRank algorithm, used to rank web pages in search results. Or Game Theory,

used in ad auctions, or Graph Theory in Google Maps. At Google there are literally

dozens of products which use interesting Mathematics. These are not just research

prototypes, but real Google products; in which Mathematics play a crucial role. The

interested reader can see more at the GOOGLE reference42 and at the AMSI site 43

We look at several further uses of mathematics today. These are biology, risk

management, cryptography, crystallography and meteorology. There are many many

more.

4.2.1 Biology

There has been an explosion of knowledge in the life sciences over the past twenty

years. At the centre of this explosion is the use of mathematics and statistics. These

advances have expanded use of mathematics and statistics beyond the traditional fields

of physical science and engineering. Doctors and scientists hope to use our genetic

information to diagnose, treat, prevent and cure many illnesses. This knowledge will

eventually lead to more effective medicines and treatments. Biology is in dramatic flux

due to a surge of new sources of data, access to high-performance computing,

increasing reliance on quantitative research methods, and an internally driven need to

produce more quantitative and predictive models of biological processes. The growing

infusion of mathematical tools and reasoning into biology may therefore be expected to

further transform the life sciences during the decades ahead. This transformation will

have profound effects on all areas of basic and applied biology. There is a discussion

42 http://www.javiertordable.com/files/MathematicsAtGoogle.pdf

43 http://www.amsi.org.au/ESA_Senior_Years/media/Google_PageRank.html
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about genetics and gene mapping in particular at the AMSI site. 44

4.2.2 Risk management45

Risk management can be seen as a core competence of an insurance company or a

bank its While risk management has thus always been an integral part of the banking

and insurance business, recent years have witnessed a large increase in the use of

quantitative and mathematical techniques. Even more, regulators and supervisory

authorities nowadays even require banks to use quantitative models as part of their risk

management process. Given the random nature of future events on financial markets,

the field of stochastics (probability theory, statistics and the theory of stochastic

processes) obviously plays an important role in quantitative risk management. In

addition, techniques from convex analysis and optimization and numerical methods

are frequently being used. In fact, part of the challenge in quantitative risk management

stems from the fact that techniques from several existing quantitative disciplines are

drawn together. This also requires the ability to interact with fellow workers with diverse

training and background.

4.2.3 Cryptography 46

Encryption plays a crucial role in the day-to-day functioning of our society. For

example, millions of people make purchases on the internet every day. Each time you

submit your credit-card details online, there is a risk that this information may be

stolen. So how can the information be sent securely? A shopper’s credit-card details

need to be encrypted before they are transmitted over the internet, and so the method

of encryption needs to be made public. But the method of decryption should be known

only to the bank that is processing the payment. For all of the ciphers in use before RSA,

the methods of encryption and decryption were known to both the sender and the

receiver of the message. With RSA, the instructions for how to encrypt a message can be

made public, without compromising the security of the method of decryption. This was

the big breakthrough that came with RSA encryption.

Today new encryption methods are being developed - besides number theory these are

requiring the use of structures such as rings and lattices.

.

44 http://www.amsi.org.au/ESA_Senior_Years/media/Gene_Mapping.html

45 Mathematics in Financial Risk Management Ernst Eberlein, Rüdiger Frey, Michael Kalkbrener, Ludger

Overbeck, http://www.stochastik.uni-freiburg.de/ eberlein/papers/risk-management-survey-final2.pdf

46 AMSI resources, RSA encryption http://www.amsi.org.au/ESA_Senior_Years/media/Cryptography.html
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4.2.4 Crystallography47

Crystallography is the science that examines the arrangement of atoms in solids. It has

always had substantial input from mathematics.48

Mathematical chrystallography provides one of the most important applications of

elementary geometry to physics. The relationship between geometry, symmetries and

group theory date back to the nineteenth century.

Far from having exhausted its research potentiality, Mathematical and Theoretical

Crystallography is today facing new challenges, not only in the very classical field of

group theory (magnetic groups, chromatic groups, N-dimensional groups) and its

applications (phase transitions, polymorphism and polytypism, twinning,

bicrystallography, ferroic crystals), but also in several directions that previously were

less strongly perceived as being directly related to crystallographic and

crystal-chemistry problems, such as graph theory, combinatorial topology, number

theory, discrete geometry, diffraction theory, etc. The development of mathematical

and theoretical crystallography will strengthen the interaction between

crystallographers, mathematicians and materials scientists and will definitely

contribute to the recognition of crystallography as an interdisciplinary science.

4.2.5 ’Traditional’ mathematical modelling - meteorology

There are many areas of our lives where mathematical modelling is used. One of the

most important areas is modelling the behaviour of weather and the oceans. Especially

when we are all interested in the question of climate change mathematics is at the

forefront of answering questions in these areas. The mathematics has changed a great

deal but it is interesting that a lot of the ideas used today date back to a book by Lewis

Fry Richardson49. The first edition of this book, published in 1922, set out a detailed

algorithm for systematic numerical weather prediction. The method of computing

atmospheric changes, which he mapped out in great detail in this book, is essentially

the method used today. He was greatly ahead of his time because, before his ideas could

bear fruit, advances in four critical areas were needed: better understanding of the

dynamics of the atmosphere; stable computational algorithms to integrate the

equations; regular observations of the free atmosphere; and powerful automatic

47 International Union of Crystallography Commission on Mathematical and Theoretical Crystallography

http://www.crystallography.fr/mathcryst/

48 Introduction to Geometry, H S M Coxeter, John Wiley 1969

49 Weather Prediction by Numerical Process,2nd Edition, Part of Cambridge Mathematical Library ,Lewis

Fry Richardson, August 2007
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computer equipment. Over the ensuing years, progress in numerical weather prediction

has been dramatic. Weather prediction and climate modelling have now reached a high

level of sophistication, and are witness to the influence of Richardson’s ideas.

5. Possible implications for mathematics education

How do the areas of discussion in the above sections influence what is happening in the

classroom? There is little doubt that the above says that the nature of mathematics has

changed over the past two centuries and we can expect it to continue to change. The

mathematics in the school classroom has not changed at the same rate. There are

evolutionary changes taking place in the Victorian curriculum but it is slow.

Technology is changing our society in every way and it would naive to think that it is not

effecting education but the change has been slow. The first changes date back to the

introduction of calculators in the 1970’s and the introductory use of computers.

Computing for schools was introduced and the book ’Computing for schools using

MINITRAN’ by K. McR. Evans and R.D. Money 50 was written and the first steps were

taken. This book was listed as preliminary reading for students undertaking the General

Mathematics computer option. Many schools introduced programming into their

Mathematics courses. New software appeared, spreadsheets appeared in schools and

by the mid 1990’s were being used extensively. We discuss technology further in the

following section.

The content of Victoria’s ’higher level’ courses, ’Mathematical Methods’ and ’Specialist

Mathematics’ have many similarities to the courses of 1972 and with a large overlap

back to 1944 and before. This is not necessarily a bad thing but we must be asking the

questions about whether our pathways are appropriate in the twenty first century. We

will explore that development of our senior courses in the following section.

5.1 Some views on what we should be aiming for

5.1.1 Australian Assocation of Mathematics Teachers 51: School
mathematics for the 21st century: Some key influences

Mathematics for the ’knowledge economy’ There is a strong argument that

mathematics is increasingly important in our society. It is clear that the pervasive

50 Computing for schools using MINITRAN / K. McR. Evans, R.D. Money, Adelaide : Rigby, 1971.

51 http://www.aamt.edu.au
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technologies of our times are, and will continue to be, substantially based on, and

enablers of, mathematics. Those developing technologies need, of course, to be highly

mathematically competent. On the broader level our society is very much driven by

data and analyses of mathematical models that result from the use of the technologies.

Everyone needs mathematical skills and capabilities.

On the other hand, however, these technologies effectively ’submerge’ the popular

perception of what constitutes ’mathematics’ - mathematics seems nowhere near as

important as it used to be. No-one needs to be able to manually do a whole range of

things such as simple and now, very complex, calculation. These can be automated.

This paradox is resolved if we consider what we mean by mathematics. ’Low level’ skills

that can be more accurately and efficiently done by a machine are certainly much less

relevant in use and can no longer be supported as the key outcomes of school

mathematics for their own sake. The 21st century requires mathematics of a higher

order for citizens to be able to understand, work with and create mathematical models

that are accessible and powerful in the context of current and emerging technologies. As

a result, the important mathematics in schooling should be about this sort of

mathematics.

That is not to say that formerly important ’lower level’ skills are not important. In some,

perhaps many cases they are, insofar as they are integral to being able to work with

powerful mathematical tools, technologies and techniques. For example, the

emergence of mental computation as an important component in young children’s

facility with number has clear practical uses. But mental computation is also important

through its capacity to deepen understanding of how numbers ’work’ and therefore

critical to fluent use of mathematical models of all sorts.

There needs to be a major rethinking of school mathematics in the light of all this. Its

purposes have to be in line with the mathematical needs of young people and their

futures. School mathematics needs to maximise its fit with the expectations of the wide

range of other stakeholders such as government, higher education, business and

industry.

Hence mathematics content needs to be selected for clear reasons that link to the nature

of the mathematics that citizens need in and from schooling, and into the future. These

reasons do not include ’we have always done it.’ Apparently heretical questions like

’Should the kind of ’procedural’ calculus that has been the pinnacle of achievement in

school mathematics in the 20th century remain so in the 21st?’ and ’Does the emphasis

on algebraic skills serve students’ and the society’s needs?’ need to be debated.
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5.1.2 Keith Devlin at the Stockholm conference

Keith Devlin in his Stockholm talk listed the following for innovative mathematical

thinkers

• Think outside the box

• Find/adapt existing methods/techniques for novel situations

• Find new approaches/methods/techniques for new problems

• Collaborate with others - work in multidisciplinary teams

• Communicate well

• Broad sense of the scope, power, and limitations of mathematics

• Good (not necessarily stellar) mathematical ability

• Ability to quickly master new mathematical techniques

Must have:

• A broad sense of the scope, power, and limitations of mathematics

• Good (not necessarily stellar) mathematical ability

• Ability to quickly master new mathematical techniques

Finally he put forward the following

• For over two thousand years, books were the only means to store and disseminate

information to society = a technology limitation! Textbook delivery has shaped our

view of what mathematics is and how to do it.

• Mathematics is about doing, not knowing.

• Mathematical thinking is primarily a way of thinking about entities, issues, and

problems in the world.

• Though much advanced mathematics is linguistically defined, a lot of mathematical

thinking can be done (or learned) without formal notation (symbols), or perhaps

with new representations

5.1.3 Functional versus specialist

In the recent publication, ’Teaching Mathematics: Using research-informed

strategies’52 Professor Mike Askew summarises some pragmatic thoughts of Peter

Sullivan on the role of mathematics.

52 Sullivan, Peter, "Teaching Mathematics: Using research-informed strategies" (2011).

http://research.acer.edu.au/aer/13
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Sullivan frames his review by tackling head on the issues around the debate

about who mathematics education should be for and consequently what

should form the core of a curriculum. He argues that there are basically two

views on mathematics curriculum - the ’functional’ or practical approach

that equips learners for what we might expect to be their needs as future

citizens, and the ’specialist’ view of the mathematics needed for those who

may go on a study it later. As Sullivan eloquently argues, we need to move

beyond debates of ’either/ or’ with respect to these two perspectives, towards

’and’, recognising the complementarity of both perspectives.

While coming down on the side of more attention being paid to the ’practical’

aspects of mathematics in the compulsory years of schooling, Sullivan argues

that this should not be at the cost of also introducing students to aspects of

formal mathematical rigour. Getting this balance right would seem to be an

ongoing challenge to teachers everywhere, especially in the light of rapid

technological changes that show no signs of abating. With the increased use

of spreadsheets and other technologies that expose more people to

mathematical models, the distinction between the functional and the

specialist becomes increasingly fuzzy, with specialist knowledge crossing over

into the practical domain. Rather than trying to delineate the functional

from the specialist, a chief aim of mathematics education in this age of

uncertainty must be to go beyond motivating students to learn the

mathematics that we think they are going to need (which is impossible to

predict), to convincing them that they can learn mathematics, in the hope

that they will continue to learn, to adapt to the mathematical challenges

with which their future lives will present them

The information given in the preceding sections of this paper supports such thinking.

The need for some mathematical rigour should not be confined to a small section of our

school population.

5.1.4 Conrad Wolfam DEECD meeting May 28 2014

Few educationalists deny the importance of the subject, but an increasing number

believe that lessons are becoming irrelevant

This should be the golden age of maths in schools. After generations of benign neglect,

the subject has been thrust into the media spotlight. Politicians, educators and private

companies maintain that effective maths learning is the key to everything from smarter

workers and savvier consumers to improved national competitiveness.

And in truth, research does suggest that maths is key. It provides the underpinnings for
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a problem-solving mindset that is applicable in every sector of society. From research to

manufacturing and the service economy, modern enterprises run on computers, whose

coding principles are rooted in the rigorous logic of mathematical thinking. Studies

presented by children’s charity UNICEF show that maths achievers excel - and earn

higher salaries globally- in any profession they enter.

Yet many students still flee from maths in the classroom. Engagement is plummeting.

Even those who recognise the compelling arguments for advancing their careers regard

maths classes as an ordeal.

Conrad Wolfram founded ComputerBasedMath.org (CBM) in 2010 to promote the use

of computers in teaching the subject. He believes that people know there is something

called mathematics that is important and yet we have this subject in schools that

everybody thought was the subject but it isn’t. It’s disconnected.

Three years ago Conrad gave a TED talk that has since been viewed nearly 900,000

times. The essence of the talk is that although maths requires a combination of problem

formulation, abstraction, calculating and communicating, schools remain steadfastly

focused on calculating. The alternative is to teach mathematical thinking and hand the

drudge work to computers.

He sees parallels between traditional approaches to teaching maths and subjects like

Classics. When people stopped needing Greek and Latin in everyday life, schools

continued to teach Classics, but as a proxy for learning English grammar. With maths

there is a real-world subject but what we are teaching is a proxy and the proxy isn’t

working that well. He believes that if stick with your current subject it will turn into

Classics. Because in the end you can’t justify spending billions of dollars a year around

the world teaching a subject that basically nobody is using. It will not survive as a

general-purpose subject.

So what needs to be done? He believes there are two choices:

• Essentially a new subject starts to replace maths, or

• we change maths into the subject it ought to be.

What might a new maths curriculum include? CBM has a list that includes:

mathematical thinking; everyday maths; finding patterns in information; knowing

where you are in space; mathematics in the natural world; mathematics in technology;

winning; and money maths.

Another important issue is whether those with traditional training will be able to teach

the new approach. Finally, and most seriously, the educational assessment community

has not signed on yet. Assessment providers are organised to measure calculating skills
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and maths content as a body of knowledge, not the open-ended understanding that he

espouses.

5.2 The role of technology

Professor John Crossley53 in an earlier paper for the VCAA writes the following

At this point in our history we can use mechanical, or more frequently electronic,

devices to perform repetitious tasks or to shortcut them. This has been the case since

slide rules were introduced - some might even say, since the abacus was introduced.

What is different now is that a multitude of tasks, identical or different, can be

performed at, so to say, the touch of a button and very quickly. This change in quantity

brings with it a change in quality.

It is easy to deal well with single computations such as finding an n-th root. This is

because we can give a clear and explicit process for finding such a root and a proof that

it is correct. On the other hand we do not seem to be able to deal as well or as

adequately with long sequences of computations. The very complexity of some

computations is too much for us to grasp. We do not seem to be able to handle such

sequences in a way that is satisfactory enough from a formal point of view.

In order to equip the next generation adequately we need to give them sufficient

understanding of the individual processes and also sufficient understanding of

sequences of processes so that they can make informed judgments about the reliability

of the software and hardware that they will employ. This cannot start too early.

As well as examples of their usefulness, examples can easily be given where there are

problems: try taking the square root of a number over and over again on (different)

handheld calculators.

Let us also be thoughtful about when it is appropriate to use computers or calculators.

We use them when we do repetitious work. When we need to do a calculation a

thousand times, or even weekly or daily, it is foolish to use pen and paper: a computer

or calculator is more reliable and less stressful. However, for a one-off, intricate

calculation it will usually be easier to just do it, rather than to write, test and run a

computer program for it. This is one issue involving scale, here meaning the number of

times we repeat a calculation.

53 The Essentials of, and for, Mathematics, John N. Crossley, Gazette of the Australian Mathematical Society,

Volume 33 Number 3, July 2006.
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5.2.1 Algorithms and computer programming

We have spoken about the importance of algorithms in the mathematics of today. It

seems more likely that this is again receiving attention in our system. Earlier we also

spoke of the work of Arthur Engel in this area of school education and we will trace the

development (and demise and rise again) in our system in the final section of this paper.

Algorithms make us think of computations but, as we know to our cost as computer

users, algorithms, such as the ones in the software that we use everyday, do not always

produce the answer or behaviour that they should. Along with means of computation

one also needs means of proof. Together with each algorithm one should have a proof

that the algorithm does indeed do what it is supposed to do.

The informatics competition54 run by the Australian Mathematics Trust gives us an idea

of some types of problems available for younger students.

Beginning with some number n, you write a line of ’*’s by repeatedly applying

the following rules:

• If n is 0, stop.

• If n is odd, write a single ’*’ and reduce n by 1.

• If n is even, divide n by 2.

For example, if you begin with n = 3 then you would proceed as follows. Since

3 is odd, you write a single ’*’ and subtract one to give n = 2. Since 2 is even,

you divide by two giving n = 1. Finally, since 1 is odd you write another ’*’

and subtract one. Now n = 0 and you stop, having written two ’*’s in total. If

you begin with the number n = 77, how many ’*’s do you write in total?

In the proposed Victorian senior curriculum for mathematics the introduction of the

bisection method and Newton’s method for solving equations reintroduces this way of

thinking into Mathematical Methods Units 1 and 2. In Specialist Mathematics we have

Euler’s method in Further mathematics, algorithms in graph theory. It is a start and we

should be thinking more about this.

One, but only one, of the ultimate goals in the study of structures would be the

understanding of the structure of computer programs - in particular the programs that

will be composed by the students in the course of their calculations.

Conrad Wolfram points out that calculation dominates the school curriculum and that

this should be changing with the increase use of computers. He doesn’t say that hand

54 http://www.amt.edu.au
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calculation should be abandoned but its prominence diminished.

There are now computer languages which are suitable for primary school and are

’modern’ in their approach -Scratch55 is one of these. It is free. Python 56 is also being

used in schools.

It is worth noting the following recommendation by National Mathematics Advisory

Panel57.

Recommendation: The Panel recommends that computer programming be considered

as an effective tool, especially for elementary school students, for developing specific

mathematics concepts and applications, and mathematical problem solving abilities.

Effects are larger if the computer programming language is designed for learning (e.g.,

Logo) and if students programming is carefully guided by teachers so as to explicitly

teach students to achieve specific mathematical goals.

6. The Victorian Senior Mathematics Curriculum

There has been substantial work by Maths Educators in this field in recent years in

Victoria and in particular the work of Professor Kaye Stacey and her associated

researchers at the University of Melbourne. Her work in problem solving and the use of

technology have been very influential in the formation of courses. Professor Stacey has

been very involved in course design in Victoria during recent decades and she has

exerted a very positive influence on what has happened in Victoria. Some of her

influential publications are listed as footnotes.58

55 http://scratch.mit.edu

56 http://teachers.theguardian.com/teacher-resources/11331/Teaching-Programming-With-Python-

Computing-At-School

57 National Mathematics Advisory Panel. Foundations for Success: The Final Report of the National Math-

ematics Advisory Panel, U.S. Department of Education: Washington, DC, 2008.

58

Kendal, M. and Stacey, K. (2001). The impact of teacher privileging on learning differentiation with technol-

ogy. International Journal of Computers for Mathematical Learning 6(2), 143-165.

Pierce, R., Stacey, K. (2004). A framework for monitoring progress and planning teaching toward the effec-

tive use of computer algebra systems. International Journal of Computers for Mathematical Learning, 9(1),

59-93.

Kaye Stacey, The place of problem solving in contemporary mathematics curriculum documents, The Jour-

nal of Mathematical Behaviour, 24(3),2005
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In the following we look at the development of our senior secondary courses.

59 Until 1960 there was only one university in Victoria, the University of Melbourne.The

earliest Victorian Matriculation (University Entrance) Examinations University exams

were in 1857. The University of Melbourne set the papers. To begin with there were

three mathematics subjects: Arithmetic, Algebra, and Euclid (or Geometry). Books used

in the nineteenth century were all published in England and included books such as

Todhunter’s Trigonometry60.

The ideas of the Mathematical Association, formed in the Britain in 1897, were

influential in the teaching of Mathematics in Victoria and in 1905 a statement was made

that all of the mathematics examinations should be set in general accordance with the

recommendations contained in the publication: Teaching of Elementary Mathematics:

Report of the Committee appointed by the Mathematical Association, (1905)61

A highly influential figure in Victorian Mathematics Education was Sir Thomas Cherry.

He dominated the mathematical scene in Victoria for thirty-five years. He was educated

at Scotch College in Melbourne, the University of Melbourne and completed his PhD at

Cambridge University. In 1929 he accepted the Chair of ’Mathematics, Pure and Mixed’

at the University of Melbourne. In 1952, separate chairs in Pure and Applied

Mathematics replaced this Chair and Cherry was appointed to the Chair of Applied

Mathematics, which he occupied till his retirement in 1963. In mathematics he was

involved in the Year 12 courses and the examinations throughout his tenure at the

university. He established relations with secondary school teachers and delegated work

to them. A biographer (Bullen (1967)) 62 writes:

By the time I had arrived in Victoria, he had acquired an almost god-like

stature among the mathematical teachers of the State, and the quality of

preparation of entrants to Melbourne University was streets ahead of that in

What is mathematical thinking and why is it important, K Stacey - Progress report of the APEC project: Stud-

ies on Innovations for Teaching and Learning Mathematics in Different Cultures (II)-Lesson Study focusing

on Mathematical Thinking, 2006

59 Blake, L.J. (Ed). (1973). Vision and Realisation: A Centenary History of State Education in Victoria. Mel-

bourne: Education Department of Victoria.

60 I Toddhunter, Plane Trigonometry, Macmillan and Co, Cambridge, (1860)

61 The teaching of elementary mathematics : reports of the committee, Mathematical Association (Great

Britain),London : Bell, 1905

62 Bullen K E, (1967). Biography of Sir Thomas Cherry. Records of the Australian Academy of Science, 1(2),

Canberra, Australia.
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any other Australian State. In spite of current fanfares in some other States, it

is doubtful whether school education in Mathematics and Physics will for

many years approach the quality it reached in Victoria in Cherry’s time.

Curriculum and examination organisations

From 1857 to 1964 the University of Melbourne set the Matriculation Examinations for

mathematics. In 1912 a Schools Board consisting of representatives of the Education

Department, independent schools and the university replaced the university’s Board of

Public Examinations. The Board relinquished control of the matriculation from 1945,

and all other examinations from 1965. In July 1964 the Victorian Universities and

Examinations Board (VUSEB) took over prescribing the courses and setting the

examinations. The newly created Monash University joined with Melbourne in this

structure. This all changed in 1979 when a new state structure for curriculum and

assessment was established which the universities no longer controlled. This was the

Victorian Institute of Secondary Education. The Institute was replaced by the Victorian

Curriculum and Assessment Board (VCAB) in 1986 and this in turn by the Board of

Studies in 1993 , which was subsequently replaced by the current Victorian Curriculum

and Assessment Authority (VCAA) and the Victorian Registration and Qualifications

Authority (VRQA) in 2001.

The Board was responsible for curriculum development and evaluation of courses from

Prep to Year 12. It also accredited courses and was responsible for assessment policy

from Prep to Year 12. It also administered programs leading to the assessment and

certification of the Victorian Certificate of Education for Years 11-12, as does its

successor the VCAA.

The Board of Studies was abolished in 2002 and replaced by the Curriculum Assessment

Authority which was assigned responsibility for all functions formerly undertaken by

the Board of Studies.

Mathematics subjects

Until 1972

In the post second world war years up to 1972 the two high level level courses were Pure

Mathematics and Calculus and Applied Mathematics. A third course General

Mathematics ran parallel to them. (These subjects are listed as three of the 25 subjects

listed by the Professorial Board has prescribed the Matriculation Examination,

December, 1944. General mathematics could not be counted with either Pure

Mathematics or Calculus and Applied Mathematics as a subject of the Matriculation

Examination)
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Pure mathematics contained questions on algebra, trigonometry and combinatorics

and probability as a side product of combinatorics. The questions still seem familiar

such as

• Solve the equation
32x−1 +1

84
= 3x−3

Question 1a, Pure Mathematics Paper 2, 1956

• In a certain country the number of births in each year is 2 1
2 per cent. more than in

the previous year, and there were 562,500 births in 1954. What was the number of

births in 1937. Assuming that all are still living, find the number of persons aged 17

or less at the end of 1954. (Work to the accuracy permitted by the tables, and do not

claim any greater accuracy.

Question 8, Pure Mathematics Paper 2, 1956

This second question is interesting in the light of the discussion on the use of

technology given below. Their technology here was 4 figure logarithm tables.

It is evident that any of the questions (with the exception of questions on conics) that

were asked on these papers could still be asked within the subjects of the proposed new

study designs for mathematics beginning in 2016.

Calculus and Applied mathematics contained calculus questions which are very much

like the questions we see today but the applied mathematics contained a lot more than

we have today with such topics statics of a rigid body, power, circular motion, simple

harmonic motion and energy. There was no probability or statistics

Questions from the 1956 Calculus and Applied paper included.

From first principles find the gradient of the graph of y = x2 at x = 3:state clearly the

graphical interpretation of the various steps.

Question 1a, Calculus and Applied Paper 1, 1956

At any time t the displacement of a particle moving in a straight line is x. Express its

acceleration as a derivative with respect to x.

A particle leaves O with velocity 2 ft/sec, and its acceleration thereafter is equal to −1
6

3
p

x

ft/sec2 when its displacement from O is x ft. Find its displacement when it first comes

to rest.

Question 7, Calculus and Applied Paper 1, 1956
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1972 - 1980

From 1967 until 1971 a new course structure ran parallel to the existing courses of Pure

Mathematics and Calculus and applied mathematics and General Mathematics. The

new subjects were Pure Mathematics (New), Applied Mathematics and General

Mathematics(New). The new subjects ran unaltered from 1972 to 1980. Despite the

small change in names, this was one of the more radical changes in Victorian school

mathematics and curriculum changes were implemented which are still with us today.

Matrices and complex numbers were introduced, the formal language of sets and

functions became a part of every topic . Probability and probability distributions were

added to Applied Mathematics and General Mathematics and from 1975 Linear

programming questions were regularly included on the General Mathematics paper.

Many of these changes were influenced by the New Maths movement which we discuss

below.

This was a large step in curriculum innovation and to see its power we only have to

observe that much of it is still with us today. It was a timely change.

Richard Tees 63 has commented on other effects of this curriculum change. The quote is

from a book review by Colleen Vale64.

Teese discusses the "new mathematics" reform during the 1960s that involved

the phasing in of three new subjects called General Mathematics, Pure

Mathematics and Applied Mathematics in the Higher School Certificate

(HSC) from 1967-71. Teese explains that modern mathematics was

concerned with improving the quality of teaching.

An increased emphasis on understanding was sought through the use of set

theory and the integration of different aspects of mathematics. At this time

there was also a growing demand for academic schooling among the middle

and upper working classes. General Mathematics attracted increased

participation from girls. High socio-economic status (SES) boys who were

seeking careers in the professions, such as medicine, participated in General

Mathematics at similar levels to the previous decade. Boys from middle and

upper working class backgrounds were attracted to Pure Mathematics

coupled with Applied Mathematics, the two most demanding mathematics

63 Richard Teese, Academic Success and Social Power: Examinations and Inequality (2nd ed.) (Melbourne,

Australia: Australian Scholarly Publishing, 2013,

64 Colleen Vale Book review of Academic Success and Social Power: Examinations and Inequality(1st edi-

tion), Mathematics Education Research Journal, 2001
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subjects designed as prerequisites for engineering and science careers.

They participated in these two subjects in higher proportions than boys from

high SES backgrounds. The performance data five years after the

implementation revealed the previously established pattern where students

from a high SES background and private schools were less likely to fail and

more likely to be awarded high marks than students from low and middle

SES schools. This result was the same for all three subjects, but especially for

Pure and Applied Mathematics where participation rates were lower for high

SES students. Teese argues that the reform process lacked a student

perspective and did not address the lack of both resources and mathematics

teachers with university mathematics qualifications in government schools.

Further, he argues that the reformers did not question the expectations and

values set by Matriculation syllabus writers and examiners. The subjects

therefore retained an intellectual orientation. The new mathematics, rather

than leading to an improvement in understanding, was interpreted as new

content, and was taught in the traditional way with poor resources.

Examiners continued to require advanced skills in reasoning and

explanation. He cites evidence of private school teachers as textbook writers

to argue that teachers in the academically established private schools were in

the best position to adapt to the new syllabi. Hence the students from families

without the cultural and educational capital remained at a disadvantage.

1981 - 1985

In 1981 a new structure was introduced with new subjects that were classified as Group

2 within the Victorian HSC. This coincided with the new organisation, VISE being in

control of examinations and curriculum.These subjects were of a more practical nature

and had names such as Mathematics at Work and Business Mathematics. They did not

have external examinations and assessment was carried out within the school.

Through the 1970’s and early 1980’s a new structure was available for schools to offer

students at year 12. This was the Schools Tertiary Entrance Certificate. Schools offered

mathematics inside this structure and it was recognised by VISE. There were

considerable conflicts between schools and parents when schools chose to offer only

the STC course. For example, Moreland High School in Coburg did this in 1976.

The existing subjects of Pure, Applied and General mathematics were given the

classification of Group 1. The examination system continued for these. HSC Group 1

mathematics subjects were also amended to include options. In Applied Mathematics

probability disappeared from the core syllabus and was offered as an option in both

Pure Mathematics and Applied Mathematics. The other options in Applied
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Mathematics were Numerical Mathematics and Computer Applications in

Mathematics. Matrices and Complex numbers became an option in Pure Mathematics.

In General Mathematics there was also a core option structure. The options were

assessed at the school level

1986 - 1990

In 1986 the Group 1 and Group 2 structure continued but now with only two Group 1

subjects, Mathematics B building on the content of Mathematics A. The content of the

core did not vary greatly from what we had seen since the substantial change in 1971.

There was a large selection of options offered at this stage. Some were much more

popular than others. The reason for the popularity was often that the area had been in

the subjects of the 1970’s. The computer based mathematics option continued. One of

interest for the proposed Victorian study designs is the following. It is taken from the

VISE, HSC course description for the years 1986 -1990 65.

Topic 2: Statistical sampling

. . . Statistics play an important role in today’s society-in our personal lives, in

commerce and in scientific study. Clearly the ability to obtain and correctly

interpret statistical data, and to critically appraise the ways in which

statistical information is used to support arguments in useful in the modern

world.

1991-1994

This was a period of massive change in the structure of school assessment. It lasted for

four years and underwent considerable modification on the way through. We begin

with a quote from Colleen Vale.

. . . the introduction of problem solving Quoting from the Blackburn Report

he (Teese) identifies the underlying principles of the recommended reforms:

’Any discussion of curriculum must begin by asserting the primacy of

essentially common and cultural purposes’ In the previous decades the needs

of mass secondary education had led to the proliferation of subjects and

resulted in a de facto streaming of subjects and hence students. The

recommendations of the Blackburn Committee implied that ’the problem of

diversity would have to be managed within one certificate. This would not be

65 Higher School Certificate Course Description, MathematicsGroup 1, Victorian Institute of Secondary Ed-

ucation, 1985
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through formal streams, but through flexible curriculum design and

multiple approaches to testing student learning’ .

The mathematics course design in the VCE provided a flexible structure and

content intended to enable students to engage with a variety of mathematical

interpretations and applications. The mathematics subjects were based on

major areas of the discipline: Space and Number, Change and

Approximation, and Reasoning and Data. A second year of study in each of

these was called Extensions, hence there were six subjects that could be taken

over two years of the certificate. The mathematics subjects in the new VCE

included a new emphasis on the mathematical processes involved in problem

solving and investigations. These were assessed through school-based tasks.

Pressure to change the nature and structure of the VCE mathematics during

the 1990s, Teese suggests, did not arise from the extremely high failure rates

among working class students. Rather, he argues, the changes were instituted

because the two major universities expected greater routine facility among

their undergraduate students than was evident among the highest achieving

VCE students that they selected. Whilst Teese provides evidence to support

this argument he could also have referred to the pressure arising from the

media’s publication of concerns about authentication and the cultural

capital of students in private schools.

Mid-way through the 1990s, the revised VCE restored the hierarchical nature

of mathematics subjects evident in the previous decades. The mathematics

subjects in the revised VCE were Further Mathematics, Mathematical

Methods and Specialist Mathematics.

One interesting aspect was the subject Reasoning and Data where some very different

topics were introduced into the curriculum. Some of these topics had appeared as

options in previous courses but here we had a whole course devoted to topics which

had been said to be important but could not find a permanent place in the school

curriculum. The topics covered included:

• Data description and presentation (The predecessor of the statistics core of Further

Mathematics)

• Probability: models for data (This included a study of probability distributions, some

of which is now in Mathematical Methods)

• Statistical inference: drawing conclusions from data. ( This has again disappeared. It

included estimation, confidence intervals, significance testing and χ2.

• Logic and algebra which included graph theory (some of which has found a place in

Further Maths), Boolean algebras. propositional logic, and logic and proof. (It should
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be noted that other aspects of this collection have appeared in the year 11 subject

General Mathematics but they are not widely incorporated into school courses.

1995 to the present

We will not dwell on the curriculum changes as it has been twenty years of stability after

the challenging years from 1991 - 1994. Some of the most substantial changes have

come in the use of technology and this is discussed below.

The New Maths in Victoria and the School Mathematics Research
Foundation

From 1970 the number of students sitting the university entrance exams for

mathematics had increased sufficiently for textbooks to be written within the state. For

example There were three books which appeared within a couple of years. This was at

the same time that the ’New Maths’ was being introduced in both the USA and Australia

and there was considerable tension between members of the mathematics community

of Victoria and this was reflected to some degree in these new texts. One of the new

texts was: School Mathematics Research Foundation, Pure Mathematics (1970)66. This

book was influential but School Mathematics Research Foundation In 1965 the

Mathematical Association of Victoria stressed the need for research into methods of

improving the teaching of mathematics in secondary schools. Shortly after this with a

grant from the Mathematical Association of Victoria, The School Mathematics Research

Foundation was formed with the aim of carrying out and encouraging such research.

The first president was Professor Gordon Preston of the new Monash University. This

Foundation and the push for the ’New Maths’ was centred around Monash University.

The Foundation produced a few publications including a book called Pure Mathematics

published in 1970. The authors were a mixture of mathematicians from universities and

schoolteachers. In general schools did not adopt this book for any length of time but it

has influenced school mathematics in Victoria for the past forty-five years. Generally it

was well written and mathematically rigorous. New definitions were not introduced

without a rationale for the choice of definition and results were proved wherever

possible at this level. The language and concepts were very sophisticated.

66 Cameron, N., Clements, M., Green, L. & Smith, G., (1970) School Mathematics Research Foundation: Pure

Mathematics , Melbourne: Cheshire.
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Technology

The progression of technology and calculating aids has been remarkable. From the

1920’s and up to 1978 the main method of calculation in senior school mathematics was

the use of logarithm tables. Chris Barling67,in his interesting article on the history of

logarithms in this state writes.

It may well be that the authorities in Melbourne were in the vanguard of

educational practice in this respect, because the commercially published

books of four-figure tables that were a familiar feature of school mathematics

until the 1970s were all first published in the 1920s, or later. One suspects

that the tables provided by the examiners of 1910 were home-grown affairs,

possibly compiled at the University expressly to accompany the Public

Examinations: if so, it was an innovation of great foresight and its

originators should be honoured as pioneers in the ever-accelerating advance

of calculating technologies.

In the examinations of 1953 to 1968 the instruction at the beginning of each paper was

that mathematical tables are provided, but slide rules must not be used. They dropped

the negative instruction about slide rules in1969 and this is the case in the years

1969-1977. From 1972 they added that a list of miscellaneous formula would be

provided. In the Victorian Universities and Schools Examination Board handbook for

1978 in the materials for examinations section it is stated that slide rules and electronic

calculators may be used for mathematics.

The General Mathematics and Mathematics A/B computer option68

A ’computing option’ was available within the Victorian Year 12 General Mathematics

course from the mid 1970’s. The course gained popularity, and by 1979 was offered at

many schools, though often students drew flowcharts without ever running the

programs they represented, or ran iterative processes on calculators as they did not

have adequate access to real computers.

The computing option of General Mathematics was transferred into Mathematics in the

reforming of courses in 1985.

The course continued in Mathematics A as an option

67 Investigations Into the Introduction of Logarithm Tables in Victoria Chris Barling, Conference Proceed-

ings 2003 MERGA

68 The Victorian Universities and Schools Examination Board, Handbook of directions and prescriptions,

August 1997
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The progression in the use of calculators in Victorian Schools has been as follows69:

• 1978 scientific calculators

• 1997/8 approved graphics calculators permitted (examinations graphics calculator

’neutral’)

• 1999 ’assumed access’ for graphics calculators in Mathematical Methods and

Specialist Mathematics

• 2000 assumed access to graphics calculators for all VCE Mathematics Examinations

• 2002 Mathematical Methods (CAS) pilot study, ’assumed access’ for approved CAS in

pilot examinations.

• 2006-2009 assumed access to graphics calculator or CAS technology for both Further

Mathematics examinations. Concurrent implementation of Mathematical

Methods/Mathematical Methods (CAS) with common technology free Examination

1 and technology assumed for Examination 2 graphics calculator for Mathematical

Methods, CAS for Mathematical Methods (CAS). Technology free Examination1 for

Specialist Mathematics and technology assumed (graphics calculator or CAS) for

Examination 2.

• 2010-2015 assumed access to graphics calculator or CAS technology for both Further

Mathematics examinations. Technology free Examination 1 for Mathematical

Methods (CAS) and Specialist Mathematics Examination 1. CAS technology assumed

Examination 2 for for Mathematical Methods (CAS) and Specialist Mathematics.

• 2016-2020 . Assumed access to CAS technology for both Further Mathematics

examinations. Technology free Examination 1 for Mathematical Methods and

Specialist Mathematics Examination 1. CAS technology assumed Examination 2 for

Mathematical Methods (CAS) and Specialist Mathematics.

Mathematical Methods (CAS) and Mathematica computer-based
examination

The Victorian Curriculum and Assessment Authority conducted a three year trial,

from 2011 to 2013, for computer-based delivery and student response to the

extended answer section of VCE Mathematical Methods (CAS) Examination 2. The

trial involved schools across government, Catholic and independent sectors and

aimed to develop and support effective alignment between the use of technology in

69 Evans, M., Leigh-Lancaster, D., Norton, P. (2003). The Victorian Curriculum and Assessment Authority

(VCAA) Mathematical Methods Computer Algebra System (CAS) pilot study examinations 2003. Proceed-

ings of the 26th annual conference of the Mathematics Education Research Group of Australasia, Geelong,

VIC, 372-379
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curriculum, pedagogy and assessment, using the computer algebra system software

Mathematica, from Wolfram Research. A group of around 70 students from these

schools sat the examination in 2013 where Mathematical Methods (CAS)

Examination 2 was produced, delivered and sat as a computer-based exam, with the

functionality of Mathematica as the computational tool. The VCAA has now

expanded implementation of the Computer-Based Examination 2 for Mathematical

Methods (CAS) to a further 5 schools, for CBE in 2016.

6 Concluding remarks

We first recall the concluding remarks of Professor Crossley 70 which were given in a

paper for a previous review

Having determined what the context is in which mathematics is to be taught,

and to whom, one needs to be aware of its human origins and also of its

enormous potential for changing, and hopefully improving, the world. At the

present time mathematics encompasses much more discrete mathematics

than it ever did. This should be recognised and an informed choice be made

between retaining what has traditionally been taught - which has tended to

be continuous mathematics - and what is needed now - namely significantly

more discrete mathematics and an adequate appreciation of structure. There

is not time or space in school to retain everything presently in the syllabus

and introduce more. That would also be unfair to both students and

teachers. The best foundation is to treat a limited number of areas to a good

depth and, at the same time, teach students how to learn mathematics so

that they will later be able to venture into areas previously unknown to them.

Technology should be used where appropriate, but both its benefits and its

limitations should be made clear. The rôles of both proof and computation

should be clearly presented and permeate all the work. Ideas of both proof

and (mathematical) structure are fundamental and support each other. This

should be properly recognised. Without the idea of structure, the idea of proof

has no foundation. Also the usefulness of the language of mathematics for

describing the world, even without proof or calculation, should be

established. Finally a balance should be struck - and this is not easy to

achieve - between, on the one hand, supporting, training and developing

70 The Essentials of, and for, Mathematics, John N. Crossley, Gazette of the Australian Mathematical Soci-

ety,Volume 33 Number 3, July 2006.
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those students who will be our successors as teachers and professional

mathematicians and, on the other, trying to give some idea, however

minimal, of mathematics, its usefulness, power and beauty to everyone.

It does seem timely to carefully consider change in senior secondary mathematics. We

know that the subject is useful to society in so many ways and none of the critics of the

present state of mathematical education argue against this. In the current review some

changes have been made that take us one step in the direction advocated by people

such as Conrad Wolfram or Charles Fadel. A gentle evolution is necessary. The subject

itself is has changed greatly in the past century and this is not reflected in our courses.

The fact that our high level courses today are very similar to those introduced in 1967,

nearly 50 years ago, should bring us to question what is in our courses. The world is not

at all the same as it was in 1967,( two years after I matriculated). Should our courses

have changed more than they have? This is an opportune time to introduce some new

ideas into our curriculum and to start to plan and consult on changes for the future.
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