[image: image1.png]4N Victorian Curriculum

Foundation-10



[image: image2.png]vaumn CURRICULUM
AND ASSESSMENT AUTHORITY





Digital Coding (Technologies) – Visual Programming Languages in the Digital Technologies Curriculum F-6

Slide 1: Introduction

Welcome to Visual Programming in the Digital Technologies curriculum.
Slide 2: This Session

In this session, we will cover where visual programming fits in to the Digital Technologies curriculum, we will cover some key programming concepts that teachers will need to understand to teach the curriculum, we'll be looking at the introduction to visual programming by solving a problem using the problem-solving methodology outlined in the Digital Technologies curriculum, and lastly we'll be looking at some resources for visual programming.
Slide 3 & 4: Strands

Let's get started. So, where does visual programming fit in the Digital Technologies curriculum? If we have a look at the three strands of the curriculum – Digital Systems, Data and Information, and Creating Digital Solutions – it's in the Creating Digital Solutions strand that visual programming is developed and used by students.
Slide 5: Creating Digital Solutions

This is where coding, or visual programming, comes in. It explores the processes and skills required for students to create digital solution. The strand follows the problem-solving methodology of analysing, designing, developing and evaluation, and it focuses on exploring processes and skills by which students create digital solution.
So, if we look at analysing, we're talking about what's the problem, what are the functional requirements, what are the important relevant parts. In designing, we're breaking down the problem. We're looking at what steps do we need to solve the problem, and "Can you tell me what it should do?"
In terms of developing a solution, this is where we are implementing our algorithms and our sequence steps into computer codes – so this is where the programming comes in. And finally, evaluating – how well does the solution work, what doesn't work, what does, can we make it better, and can we design it in a better way? And when creating digital solutions, students will need the skills and knowledge in using digital systems.

They'll apply the three ways of thinking, which are computational thinking, design thinking and systems thinking, and they'll also interact safely and apply technical and social protocols
Slide 6: Creating Digital Solutions (Levels F-6)

So if we have a look at the content descriptions for the Creating Digital Solutions strand for Foundation to Level 6, you will notice that visual programming comes in at Level 3 and 4, and continues until the end of Levels 5 and 6.
You may also have students who will go beyond visual programming to text-based programming. However, this is usually introduced at Levels 7 and 8 in the curriculum. Although there are only two content descriptions that specifically refer to visual programming, following a problem-solving approach will allow you to teach all of the content descriptions in the Creating Digital Solutions strand.
And by helping students understand and be able to decompose problems, identify important parts of problem and produce algorithms, this will result in deeper thinking and better-developed solutions. Visual programming is much more than just throwing blocks of code together.
Slide 7 & 8: Key Concepts

Let's take a look at some key programing concepts that are expected within the curriculum and need to be understood by teachers and students. Firstly, we'll look at what are visual programs, and then we'll look at algorithms and also control structures.
Slide 9: Visual Programming

Visual Programming is using a programming language or environment where the program is represented and created visually rather than as text. Some examples include Alice, GameMaker, Lego Mindstorms, MIT App Inventor, Scratch (Build Your Own Blocks and Snap).
Blocks generally fit together in these environments, like LEGO pieces. And in these programming environments, there are no syntax errors – just code blocks that do or don't work. This encourages students to further explore what different code blocks might do.
Slide 10: Visual Programming (Scratch)

A common, very popular visual programming environment is Scratch. On the left we have the stage where the action takes place by placing sprites on the stage. Blocks are located in the middle. They are colour-coded according to functions and are dragged to the right to put together to form scripts, which are pieces of code that are run when certain events occur.
The next example is used with a robotic device called a Sphero. As you can see, once again the colour-coded block of code are assembled together to make the robot perform a particular action or react to a particular event.
Slide 11: Algorithms

Algorithms are a set of steps in the correct order used to solve a problem. Flowcharts can also be used to visualise and algorithms. Algorithms are all around us, and we can make connections with students when we talk about everyday algorithms like recipes or home or school routines or how to solve a maths problem.
Slide 12: Control Structures

Control Structure are used by computers to work through coded instructions. All problems can be solved using control structures. If we look at the simplest control structure, which is sequencing, this is simply putting the steps in the right order. The example on the left shows how an example of a sequence might apply to a spelling rule. In the middle, this control structure example demonstrates branching, or selection. This involves a computer determining if a given condition is true or false and then taking a different action based on that evaluation.
In this example, we have another spelling rule but this time a different step will be implemented depending on the conditions. So, does a word end in an 'E'? If yes, then remove the 'E' and add 'ing'. Otherwise, if it is false, just add 'ing'. The last control structure example uses iteration, or looping. This involves a computer repeating instructions for a given number of times or until a certain condition is met.

This example also includes some branching. It is an algorithm that can be used to solve or find a word. Start top left, scan right and down. Does the pattern match? If no, keep scanning right and down. If the pattern does match, scan around the word. Is the word correct? If not, repeat. And our repeating is our looping, or iteration. So, this is what the control structures look like as algorithms, so let's unpack them a little more and look at what they might look like as visual programs.
Slide 13: Sequence

Firstly, we have the sequence control structure, which is simply a list of steps in the correct order. A recipe would be a good example. On the right, you can see the control structure implemented as a visual program. On this occasion, the program will put the pen down and move and turn a number of times to draw a square on the screen.
Slide 14 & 15: Branching

If we look at branching: the branching control structure occurs when an algorithm makes a choice to do one or more actions depending on the different conditions. If this is true then do that, otherwise do something else.
Here is an example of a flow chart of an algorithm for changing a light bulb. You will notice the diamonds represent the parts of the program where branching will occur. The visual code blocks at the bottom of screen represent code blocks for the branching control structure.
Slide 16: Iteration
Iteration is sometimes referred to as looping or repeating instructions. It involves a set of instructions being performed over and over. The visual code blocks at the bottom represent code blocks used for iteration control structures.
Slide 17 & 18: Visual Program Stages
Let's take a look at problem-solving with visual programming and some examples.

These are the programming stages. Firstly, we're defining a problem. The Digital Technologies curriculum makes use of the problem-solving methodology. First we need a problem to solve, then we use the steps of analysing the problem. This involves breaking down the problem through decomposition, and the use of abstraction to identify the most important and relevant parts of the problem.

We then design solutions, we develop our algorithms and our user interfaces, and then we develop our solutions through programming or coding. And finally, we evaluate our solution to see whether it meets the needs of the problem. This process can be iterative, where students will go back through the various stages depending on how well their solution works.
Slide 19 & 20: Defining a Problem
Let's have a look at an example.

Something that needs to be solved, we may need break it down into its part and identify the relevant parts of the problem. An example of a problem could be to draw a regular hexagon with sides that are 50 steps long.

Slide 21 & 22: Analysing the Problem
So, if we analyse the problem:

· What do we know about hexagons?

· What are the specifics of our problem?

· How many sides does a hexagon have?

· How many angles are there in a hexagon?

· What is the angle of adjoining sides?

· How long are the sides? And

· Where will I need to start drawing from?
Slide 23 & 24: Creating a design (Algorithm) – Level 3 & 4

What might a solution look like? Firstly, looking at the algorithms in Level 3 and 4, this is an algorithm that could solve our problem. Notice that we have used a very simple branching and sequence of instructions. You can see where the branching comes in, and we can see our sequence of steps. And then we would need to check it. Does it work? At this point, you may also look at some other control structures, depending on your students' readiness.
Slide 25: Creating a design (Algorithm) – Level 5 & 7

Looking at this same problem at Levels 5 and 6, where iteration comes in. This is our second algorithm, and it may look like this. So, we're repeating the steps of moving and turning at the same time. So, we still have our branching. If the user wants a hexagon, if the answer's yes, we repeat it six times. The repetition is the iteration. It's repeating the steps. Check it. Does it work?
Slide 26 – 28: Code in Scratch – Levels 3 & 4

Moving from our algorithms that we've developed with our students, we can then move in to a program. So, let's look at some of these algorithms implemented as visual programs. Firstly, let's revisit our first algorithm, and we're looking at the branching. How might this look as a visual program?
So we can see on the left we've got our Scratch code, and we can see here we're asking a question, and that's when the branching occurs. "If... Then..." You will notice we have some user input, as this is used for branching, and then we have our sequence of steps.
Slide 29 & 30: Code in Scratch – Levels 5 & 6

If we revisit our second algorithm at Levels 5 and 6, we're adding in iteration. So how might this look as a visual programming. Once again, we have our Scratch code on the left. We have our user input. And we have our branching, where we're repeating six times. So we still get our sprite, the cat, to draw a square, but the program now involves iteration, repetition, where we have specified how many times the procedure should run.
Slide 31 & 32: Evaluate the Solution

Does our solution solve the problem? So, we need to evaluate the solution. Has the solution solved the problem? Does it work every time? Does it do what it is supposed to do? And does it meet all the requirements specified in the problem? The evaluation process determines that the solution does not satisfy the problem, then it may be necessary to revisit stages of the problem solving methodology again. This could continue until an accurate solution is reached.
Slide 33 & 34: Taking if further

You might then look at some other shapes. Students can then develop algorithms for the various shapes before implementing them as visual code. What might the algorithms look like?

Taking it even further. Given the number of sides, identify the shape by name and then draw it. We can often take a problem even further – in this case, we can create a program that will draw a regular polygon. So it might include:

· Get more input from the user;

· Determine the name of the shape;

· Calculate the angle between the adjoining sides; and finally

· Draw the shape 

An implemented as a visual program may look like this Scratch code on the right.

Slide 35 & 36: Visual Programming Languages
Common Visual Programming Languages.
Let's take a look at some of them. This is not an exhaustive list. However, these are some of the environments that you may come across. Scratch is the most commonly used in primary schools, available online or as a desktop application suitable for Levels 3 and above. Scratch Jnr is probably more suited to the earlier years, and doesn't have some of the control structures needed at Levels 3 to 6.

Hopscotch is optimised and built for iPads and Android tablets – suitable from Levels 3 and up, and does have all of the control structures for visual programming. MIT App Inventor is used to create Android mobile apps. It's very capable but it is not the first place I would start to teach visual programming.

The same goes for Alice, in which it is a desktop application that is probably better suited to older students. And there are some other options, such as Kodu, Snap!, which can be used for devices, and Tynker, which is also similar to Scratch.
Slide 37 & 38: Digital Devices
Extending to digital devices. Visual programming can be extended to a number of digital devices. Here are three different digital devices. We're not recommending these – we're simply showing a range of these, and other devices often come with a visual block-based programming language.
Slide 39: More Digital Devices
Here are a few more devices that are used using a block-based programming language. Some are tablet only, so do your homework if you decide to use any of these.
Slide 40 & 41: Resources
Here are some other resources to get you started.

https://studio.code.org
Code.org has a lot of activities and different projects that use visual programming. There are also a number of books, many of which are project-based that use Scratch or similar types of visual programming environments.
http://scratch.mit.edu
There's also YouTube. Try searching for "programming Scratch", for example. The quality will vary, but there are some useful materials out there. The most important thing is that you try a little visual programing yourself and see where it fits in with the Digital Technologies curriculum.

https://coderdojo.com/resources/
And remember to use the problem-solving methodology, especially the steps before they get to go onto a computer. You will find that their final solutions are so much better if they have done some thinking about the problem before they program.
©VCAA

