[image: image1.png]4N Victorian Curriculum

Foundation-10

[image: image2.png]vaumn CURRICULUM
AND ASSESSMENT AUTHORITY

Digital Coding (Technologies) – Introduction to Object-Oriented Programming
Slide 1: Introduction to Object-Oriented Programming

This video is one of a series produced by the Digital Coding Specialist Teachers group at VCAA.

Slide 2: Digital Technologies
The Victorian Curriculum in Digital Technologies requires students to develop solutions to computational problems. This is an outcome of the Creating Digital Solutions strand.

Slide 3: Curriculum is a continuum
At successive levels students are introduced to more advanced concepts in programming. The continuum is divided into three distinct stages.

From Foundation through to Level 6, students use ‘block-based’ visual programming languages. This is a common metaphor and helps students concentrate on developing good algorithms without having to learn written syntax.

In Levels 7 and 8, students are expected to make the transition from blocks to using a text-based language.

Once students have reached Level 8, they are introduced to Object-Oriented Programming working towards Level 10.

Slide 4: Prerequisites

Before moving onto Levels 9 and 10, students should have the following skills:

· The ability to create algorithms to solve computing problems, using both flowcharts and structured English

· And familiarity with a general purpose, text-based programming language
Slide 5: Key concepts

Simple programming languages use a style sometimes referred to as ‘imperative’, which relies on giving commands that change the state of the program. In large programs this becomes difficult to manage. Changes in values in the program can have unexpected effects.

Slide 6 & 7: A collection of objects
Object-Oriented Programming hides complexity by treating a program as a collection of objects. Each object stores its own data and has actions that can operate on it.

Sometimes an object can represent a real-world object, such as a book. So our library catalogue software is really just managing a collection of book objects. In other cases, the object may represent an abstract concept, such as a To-do list of jobs to be completed.
Slide 8: A class is a template
Because our collection of objects share common attributes, we can create a template for them. We call this template a class. A class can contain properties. These are variables which store the data about the attributes of each individual object.

Each new object added to the collection may have its own values for these properties. For example, all books have a title, and an author.

Slide 9: Another example
Using classes is very convenient when we have collections of objects, that share the same kinds of properties.

An example might be an Employee database. This is a collection of records about individuals, but each individual has the same kinds of data recorded for them.

Slide 10: Properties
We can declare a class called Employee, and add properties for first name, last name, date of birth and salary. In this case, we have an employee named Fred Smith. His birthday is 23rd of February 1982, and he is on a salary of $64,000.

Slide 11 – 13: Methods
A class can also contain methods. These are functions that act on data stored in the object’s properties. We can think of them as commands that the object understands.

What are some methods that the Employee class might require?

· Creating a new Employee

· Setting and getting the first name

· Setting and getting the last name

· Setting and getting the date of birth

· Setting and getting their salary

Here is an example of what the methods to set and get an Employee’s first name might look like.

Slide 14 – 17: Instantiation

Instantiation.
Whilst the class is the template for each object of that class, each object in our program is an individual instance of that class.

We create a new object based on the class.

Here we have created a new object ‘fred’, with this data.

fred is now an instance of the Employee class

Each new instance of a class is a new object, and can store data related to that instance.

Here we have created a second object called ‘mary’. We now have two instances of the Employee class, one object called ‘fred’ and one called ‘mary’.
Slide 18 & 19: Accessing data
In many languages properties are accessed via dot notation, in the form of object.property.

So if we need to know Fred’s salary, we can simply access this as fred.salary.
We may define some additional methods to work with the data.
For example, if we want to print their full name, we can declare a new method for this. It takes the first name, adds a space, then the second name, then returns this value.
Slide 20: Other features of OOP

At this point, we have only looked at the basic ideas of Object-Oriented Programming, but there are many other useful features that are supported by Object-oriented languages, in particular the ideas of Inheritance and Encapsulation.

Slide 21: Choosing a language

Most modern programming languages support an object-oriented model, and it is simply an extension to an existing language.

Slide 22: Where next?

To learn more about object-oriented programming, you may wish to refer to a textbook, or try one of the many online courses or tutorials available.
©VCAA

