

Mathematical Methods Examination 1

Question and Answer Book

VCE (NHT) Examination – Tuesday 27 May 2025

- Reading time is **15 minutes**: 10.30 am to 10.45 am
- Writing time is **1 hour**: 10.45 am to 11.45 am

Materials supplied

- Question and Answer Book of 16 pages
- Formula Sheet

Instructions

Students are **not** permitted to bring any technology (calculators or software), or notes of any kind, into the examination room.

Students are **not** permitted to bring mobile phones and/or any unauthorised electronic devices into the examination room.

Contents

8 questions (40 marks) _	 2–13

pages

Instructions

- Answer all questions in the spaces provided.
- Write your responses in English.
- In all questions where a numerical answer is required, an **exact** value must be given unless otherwise specified.
- In questions where more than one mark is available, appropriate working **must** be shown.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1 (4 marks)

a. Let
$$y = \frac{\log_e(x)}{x^3}$$
.

Find and simplify $\frac{dy}{dx}$.

b. Let $f(x) = \sin(\pi e^{3x})$.

Evaluate f'(0).

2 marks

Question 2 (3 marks)

Let

$$g: R \rightarrow R, g(x) = ax^3 + bx^2 + c$$
 where $a, b, c \in R$

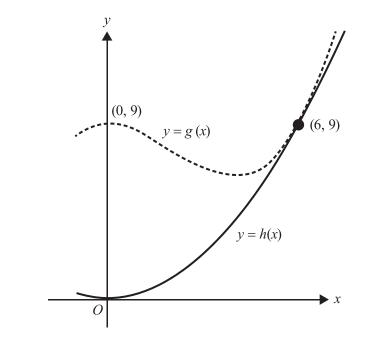
and

$$h: R \to R, h(x) = \frac{x^2}{4}$$

The graph of y = g(x) passes through the point (0, 9).

The graphs of y = g(x) and y = h(x) pass through the point (6, 9) and have the same gradient at this point.

The graphs of y = g(x) and y = h(x) are shown below.



Find the values of *a*, *b* and *c*.

Question 3 (7 marks)

Let $f: D \to R$, $f(x) = \frac{1}{2} \tan(x) + \frac{1}{2}$, where *D* is the maximal domain.

a. Find the general solution for f(x) = 0.

2 marks

b. Let $g: R \to R, g(x) = \sin(x) + \frac{1}{2}$.

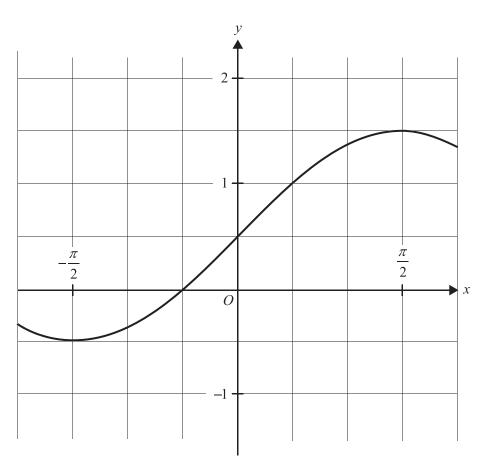
i. Find all values of x such that f(x) = g(x) for $x \in (-\pi, \pi)$.

3 marks

ii. The graph of y = g(x) is shown below.

On the set of axes below, sketch the graph of y = f(x) over the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

labelling all points where f(x) = g(x) with their coordinates and all asymptotes with their equations.



b.

Question 4 (5 marks)

An orchard contains a large number of apples. One third of the apples are bruised.

a. In a random sample of four apples, find the probability that exactly three are bruised. 2 marks

Let \hat{P} be the random variable representing the proportion of bruised apples in random samples of 10 apples from the orchard.

Find $\Pr\left(\hat{P} \le \frac{1}{10}\right)$. Give your answer in the form $\frac{2^m}{3^n}$, where *m* and *n* are positive integers.

Question 5 (4 marks)

Let $f: R \to R$, $f(x) = e^{2x}$ and $g: R \to R$, $g(x) = e^{x} + 2$.

a. Find the *x*-value of the point of intersection of the graphs of y = f(x) and y = g(x). 2 marks

b. Find the *x*-value where the graphs of y = f(x) and y = g(x - 1) have equal gradients. 2 marks

N

Question 6 (4 marks)

A high jumper has up to three attempts to jump over a bar at a specific height.

Once one attempt is successful, the high jumper does not make another attempt at this height.

At this height, let

- *A* be the event that the high jumper's first attempt is successful
- *B* be the event that the high jumper's second attempt is successful
- *C* be the event that the high jumper's third attempt is successful.

Pr(A) = 0.6 and Pr(B|A') = 0.5

- **a.** Let *N* be a discrete random variable representing the number of attempts the high jumper makes at this height.
 - i. Complete the table below for the probability distribution of N.

п	1	2	3
$\Pr(N=n)$	0.6		

ii. Find E(N), the mean number of attempts the high jumper makes at this height. 1 mark

b. The high jumper was not successful on the first attempt at this height.

Find Pr(C|B'), given that the high jumper has a 0.7 probability of making a successful jump on either their second or third attempt.

2 marks

1 mark

This page is blank.

b.

Question 7 (7 marks)

Let $f: R \to R$, $f(x) = x^2 + bx - 6$, where $b \in R$.

the domain $(0, \infty)$.

a. Find the values of *b* for which the two solutions of f(x) = 0 have a difference of 5. 2 marks

p < 0.	
Explain why an inverse function does not exist when f is restricted to	

ii. Find a rule for the inverse function of f when f is restricted to the domain $(-\infty, 0)$. 2 marks

1 mark

c. Let g be a function with maximal domain and the rule $g(x) = \log_e(-x - 2)$.

Find the value of *b* for which the maximal domain of the composite function $g \circ f$ is (-2, 2).

Question 8 (6 marks)

Let $f: [0, \infty) \to R$, $f(x) = \frac{x}{2\sqrt{x+k}}$, where k is a positive real number.

a. Consider the particular case where k = 6.

i. Show that
$$\frac{d}{dx}\left(x\sqrt{x+6}\right) = \sqrt{x+6} + \frac{x}{2\sqrt{x+6}}$$
. 1 mark

ii. Hence, or otherwise, evaluate the definite integral $\int_0^6 f(x) dx$.

3 marks

b. Find $\int_0^k f(x) dx$ in the form $\frac{a - \sqrt{a}}{b} k \sqrt{k}$ where *a* and *b* are positive integers. 2 marks

N H

End of examination questions

This page is blank.

This page is blank.

 $\ensuremath{\textcircled{\sc b}}$ Victorian Curriculum and Assessment Authority 2025

Mathematical Methods Examination 1

2025 Formula Sheet

You may keep this Formula Sheet.

© VCAA 2025

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin(A)$
volume of a cone	$\frac{1}{3}\pi r^2h$		

Calculus

$\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$		$\int x^{n} dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$		
$\frac{d}{dx}\left((ax+b)^n\right) = an\left(ax+b\right)^{n-1}$		$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$		
$\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$		$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$		
$\frac{d}{dx} \left(\log_e(x) \right) = \frac{1}{x}$		$\int \frac{1}{x} dx = \log_e(x) + c, \ x > 0$		
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$		$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$		
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$		$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$		
$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a\sec^2(ax)$				
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	
chain rule	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	Newton's method	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
trapezium rule approximation $Area \approx \frac{x_n - x_0}{2n} \Big[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_n) \Big]$				

Probability

$\Pr\left(A\right) = 1 - \Pr\left(A'\right)$		$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$	
$\Pr(A B) = \frac{\Pr(A \cap B)}{\Pr(B)}$			
mean	$\mu = \mathrm{E}(X)$	variance	$\operatorname{var}(X) = \sigma^2 = \operatorname{E}((X - \mu)^2) = \operatorname{E}(X^2) - \mu^2$
binomial coefficient	$\binom{n}{x} = \frac{n!}{x!(n-x)!}$		

Probability distribution		Mean	Variance
discrete	$\Pr\left(X=x\right)=p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
binomial	$\Pr(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$	$\mu = np$	$\sigma^2 = np\left(1 - p\right)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Sample proportions

$\hat{P} = \frac{X}{n}$		mean	$E(\hat{P}) = p$
standard deviation	$\operatorname{sd}(\hat{P}) = \sqrt{\frac{p(1-p)}{n}}$	approximate confidence interval	$\left(\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$

 $\ensuremath{\textcircled{\text{C}}}$ Victorian Curriculum and Assessment Authority 2025