

# Victorian Certificate of Education 2018

| SUPERVISOR TO ATTACH PROCESSING LABEL HERE |  |
|--------------------------------------------|--|
|                                            |  |
|                                            |  |

|                |  |  |  |  | Letter |
|----------------|--|--|--|--|--------|
| STUDENT NUMBER |  |  |  |  |        |

# **SPECIALIST MATHEMATICS**

#### Written examination 1

#### Friday 9 November 2018

Reading time: 9.00 am to 9.15 am (15 minutes) Writing time: 9.15 am to 10.15 am (1 hour)

#### **QUESTION AND ANSWER BOOK**

#### Structure of book

| Number of questions | Number of questions<br>to be answered | Number of<br>marks |
|---------------------|---------------------------------------|--------------------|
| 10                  | 10                                    | 40                 |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

#### Materials supplied

- Question and answer book of 9 pages
- Formula sheet
- Working space is provided throughout the book.

#### **Instructions**

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

#### At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

#### **Instructions**

Answer all questions in the spaces provided.

Unless otherwise specified, an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Take the acceleration due to gravity to have magnitude  $g \text{ ms}^{-2}$ , where g = 9.8

#### **Question 1** (4 marks)

Two objects of masses 5 kg and 8 kg are attached by a light inextensible string that passes over a smooth pulley. The 8 kg mass is on a smooth plane inclined at 30° to the horizontal. The 5 kg mass is hanging vertically, as shown in the diagram below.



| a. | On the diagram above, show all forces acting on both masses.                                            | 1 mark  |
|----|---------------------------------------------------------------------------------------------------------|---------|
| b. | Find the magnitude, in ms <sup>-2</sup> , and state the direction of the acceleration of the 8 kg mass. | 3 marks |
|    |                                                                                                         |         |
|    |                                                                                                         |         |
|    |                                                                                                         |         |
|    |                                                                                                         |         |
|    |                                                                                                         |         |

#### Question 2 (4 marks)

**a.** Show that  $1+i=\sqrt{2}\operatorname{cis}\left(\frac{\pi}{4}\right)$ .

1 mark

**b.** Evaluate  $\frac{\left(\sqrt{3}-i\right)^{10}}{\left(1+i\right)^{12}}$ , giving your answer in the form a+bi, where  $a,b\in R$ .

3 marks

#### Question 3 (4 marks)

Find the gradient of the curve with equation  $2x^2 \sin(y) + xy = \frac{\pi^2}{18}$  at the point  $\left(\frac{\pi}{6}, \frac{\pi}{6}\right)$ . Give your answer in the form  $\frac{a}{\pi\sqrt{b}+c}$ , where a, b and c are integers.

#### **Question 4** (4 marks)

*X* and *Y* are independent random variables. The mean and the variance of *X* are both 2, while the mean and the variance of *Y* are 2 and 4 respectively.

| Given that $a$ and $b$ are integers, find the values of $a$ and $b$ if the mean and the variance of $aX + bY$ are 10 and 44 respectively. |
|-------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |
|                                                                                                                                           |

#### **Question 5** (4 marks)

Sketch the graph of  $f(x) = \frac{x+1}{x^2-4}$  on the axes provided below, labelling any asymptotes with their equations and any intercepts with their coordinates.



| Question | 6 ( | 3 | marks) | ١ |
|----------|-----|---|--------|---|
|          |     |   |        |   |

A particle of mass 2 kg moves under a force  $\underline{F}$  so that its position vector  $\underline{r}$  at any time t is given by  $\underline{r} = \sin(t)\underline{i} + \cos(t)\underline{j} + t^2\underline{k}$ . Distances are measured in metres and time is measured in seconds.

Find the change in momentum, in kg ms<sup>-2</sup>, from  $t = \frac{\pi}{2}$  to  $t = \pi$ .

#### **Question 7** (3 marks)

Given that  $\cot(2x) + \frac{1}{2}\tan(x) = a\cot(x)$ , use a suitable double angle formula to find the value of  $a, a \in R$ .

#### **Question 8** (4 marks)

A tank initially holds 16 L of water in which 0.5 kg of salt has been dissolved. Pure water then flows into the tank at a rate of 5 L per minute. The mixture is stirred continuously and flows out of the tank at a rate of 3 L per minute.

**a.** Show that the differential equation for Q, the number of kilograms of salt in the tank after t minutes, is given by

1 mark

$$\frac{dQ}{dt} = -\frac{3Q}{16 + 2t}$$

**b.** Solve the differential equation given in **part a.** to find Q as a function of t. Express your answer in the form  $Q = \frac{a}{(16+2t)^{\frac{b}{c}}}$ , where a, b and c are positive integers.

3 marks

#### **Question 9** (5 marks)

A curve is specified parametrically by  $\underline{r}(t) = \sec(t)\underline{i} + \frac{\sqrt{2}}{2}\tan(t)\underline{j}$ ,  $t \in R$ . **a.** Show that the cartesian equation of the curve is  $x^2 - 2y^2 = 1$ .

2 marks

**b.** Find the *x*-coordinates of the points of intersection of the curve  $x^2 - 2y^2 = 1$  and the line y = x - 1.

1 mark

**c.** Find the volume of the solid of revolution formed when the region bounded by the curve and the line is rotated about the *x*-axis.

2 marks

#### **Question 10** (5 marks)

The position vector of a particle moving along a curve at time t seconds is given by

$$\underset{\sim}{\mathbf{r}}(t) = \frac{t^3}{3} \mathbf{i} + \left(\arcsin(t) + t\sqrt{1 - t^2}\right) \mathbf{j}, \ 0 \le t \le 1, \text{ where distances are measured in metres.}$$

The distance d metres that the particle travels along the curve in three-quarters of a second is given by

$$d = \int_0^{\frac{3}{4}} \left(at^2 + bt + c\right) dt$$

| find $a$ , $b$ and $c$ , where $a$ , $b$ , $c \in Z$ . |  |
|--------------------------------------------------------|--|
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |
|                                                        |  |



# Victorian Certificate of Education 2018

# **SPECIALIST MATHEMATICS**

# Written examination 1

#### **FORMULA SHEET**

#### Instructions

This formula sheet is provided for your reference.

A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

# **Specialist Mathematics formulas**

2

#### Mensuration

| area of a trapezium               | $\frac{1}{2}(a+b)h$                                         |
|-----------------------------------|-------------------------------------------------------------|
| curved surface area of a cylinder | $2\pi rh$                                                   |
| volume of a cylinder              | $\pi r^2 h$                                                 |
| volume of a cone                  | $\frac{1}{3}\pi r^2 h$                                      |
| volume of a pyramid               | $\frac{1}{3}Ah$                                             |
| volume of a sphere                | $\frac{4}{3}\pi r^3$                                        |
| area of a triangle                | $\frac{1}{2}bc\sin(A)$                                      |
| sine rule                         | $\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$ |
| cosine rule                       | $c^2 = a^2 + b^2 - 2ab\cos(C)$                              |

### **Circular functions**

| $\cos^2(x) + \sin^2(x) = 1$                                          |                                                            |  |
|----------------------------------------------------------------------|------------------------------------------------------------|--|
| $1 + \tan^2(x) = \sec^2(x)$                                          | $\cot^2(x) + 1 = \csc^2(x)$                                |  |
| $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$                        | $\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$            |  |
| $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$                        | $\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$            |  |
| $\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$           | $\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$ |  |
| $\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$ |                                                            |  |
| $\sin(2x) = 2\sin(x)\cos(x)$                                         | $\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$                  |  |

#### **Circular functions – continued**

| Function | sin <sup>-1</sup> or arcsin                 | cos <sup>-1</sup> or arccos | tan <sup>-1</sup> or arctan                 |
|----------|---------------------------------------------|-----------------------------|---------------------------------------------|
| Domain   | [-1, 1]                                     | [-1, 1]                     | R                                           |
| Range    | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ | [0, π]                      | $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ |

# Algebra (complex numbers)

| $z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\cos(\theta)$ |                                                                             |
|----------------------------------------------------------------|-----------------------------------------------------------------------------|
| $ z  = \sqrt{x^2 + y^2} = r$                                   | $-\pi < \operatorname{Arg}(z) \le \pi$                                      |
| $z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$    | $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$ |
| $z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)  |                                                                             |

# **Probability and statistics**

| for random variables $X$ and $Y$             | $E(aX+b) = aE(X) + b$ $E(aX+bY) = aE(X) + bE(Y)$ $var(aX+b) = a^{2}var(X)$                |
|----------------------------------------------|-------------------------------------------------------------------------------------------|
| for independent random variables $X$ and $Y$ | $var(aX + bY) = a^{2}var(X) + b^{2}var(Y)$                                                |
| approximate confidence interval for $\mu$    | $\left(\overline{x} - z \frac{s}{\sqrt{n}}, \ \overline{x} + z \frac{s}{\sqrt{n}}\right)$ |
| distribution of sample mean $\overline{X}$   | mean $E(\overline{X}) = \mu$ variance $var(\overline{X}) = \frac{\sigma^2}{n}$            |

#### **Calculus**

| $\frac{d}{dx}\left(x^n\right) = nx^{n-1}$                         | $\int x^n dx = \frac{1}{n+1} x^{n+1} + c,  n \neq -1$                                                        |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $\frac{d}{dx}\left(e^{ax}\right) = ae^{ax}$                       | $\int e^{ax} dx = \frac{1}{a} e^{ax} + c$                                                                    |
| $\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$                           | $\int \frac{1}{x} dx = \log_e  x  + c$                                                                       |
| $\frac{d}{dx}(\sin(ax)) = a\cos(ax)$                              | $\int \sin(ax)  dx = -\frac{1}{a} \cos(ax) + c$                                                              |
| $\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$                             | $\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$                                                                |
| $\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$                            | $\int \sec^2(ax)  dx = \frac{1}{a} \tan(ax) + c$                                                             |
| $\frac{d}{dx}\left(\sin^{-1}(x)\right) = \frac{1}{\sqrt{1-x^2}}$  | $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c,  a > 0$                        |
| $\frac{d}{dx}\left(\cos^{-1}(x)\right) = \frac{-1}{\sqrt{1-x^2}}$ | $\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c, a > 0$                        |
| $\frac{d}{dx}\left(\tan^{-1}(x)\right) = \frac{1}{1+x^2}$         | $\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$                                       |
| J                                                                 | $\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, \ n \neq -1$                                          |
| J                                                                 | $\int (ax+b)^{-1} dx = \frac{1}{a} \log_e  ax+b  + c$                                                        |
| product rule                                                      | $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$                                                         |
| quotient rule                                                     | $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$                         |
| chain rule                                                        | $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$                                                                 |
| Euler's method In                                                 | $f(\frac{dy}{dx}) = f(x)$ , $x_0 = a$ and $y_0 = b$ , then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + hf(x_n)$ |
| acceleration                                                      | $a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$           |
| arc length                                                        | $\int_{x_1}^{x_2} \sqrt{1 + (f'(x))^2}  dx  \text{or}  \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2}  dt$    |

#### Vectors in two and three dimensions

# $\begin{aligned} \mathbf{r} &= x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \\ |\mathbf{r}| &= \sqrt{x^2 + y^2 + z^2} = r \\ \dot{\mathbf{r}} &= \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k} \\ \mathbf{r}_1 \cdot \mathbf{r}_2 &= r_1 r_2 \cos(\theta) = x_1 x_2 + y_1 y_2 + z_1 z_2 \end{aligned}$

#### Mechanics

| momentum           | p = mv                     |
|--------------------|----------------------------|
| equation of motion | $\mathbf{R} = m\mathbf{a}$ |