				********		****		**********	
					SUPERV PROCESS				
	*****		*********]			
Write yo	our st	ud	ent nu	ımber	in the	bo	xes ab	ove.	Letter

Specialist Mathematics Examination 1

Question and Answer Book

VCE Examination – Monday 11 November 2024

· Reading time is 15 minutes: 9.00 am to 9.15 am

· Writing time is 1 hour: 9.15 am to 10.15 am

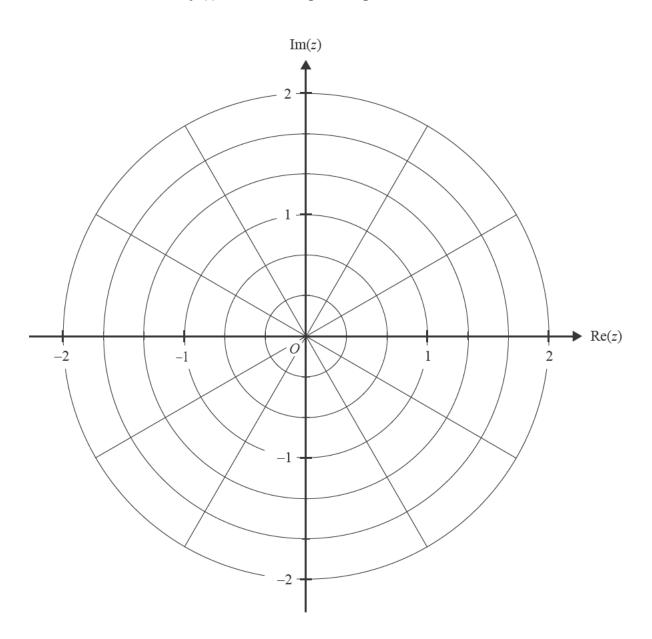
Materials supplied

- · Question and Answer Book of 16 pages
- Formula Sheet

Students are **not** permitted to bring any technology (calculators or software) or notes of any kind into the examination room.

Students are **not** permitted to bring mobile phones and/or any unauthorised electronic devices into the examination room.

Contents	pages
10 questions (40 marks)	2–13


Instructions

- · Answer all questions in the spaces provided.
- Write your responses in English.
- Unless otherwise specified, an **exact** answer is required for each question.
- In questions where more than one mark is available, appropriate working **must** be shown.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- Take the acceleration due to gravity to have a magnitude $g~{\rm m~s}^{-2}$, where g=9.8

	nsider the function with rule $f(z) = 3z^3 + 2iz^2 + 3z + 2i$, where $z \in C$. Verify that $3z + 2i$ is a factor of $f(z)$.	1 mark
b.	Hence or otherwise, solve the equation $f(z) = 0$.	
	Give your answers in Cartesian form.	2 marks

c. Plot the solutions of f(z) = 0 on the Argand diagram below.

1 mark

Question 2 (3 marks)

Prove that if x is an odd integer then $2x^2 - 3x - 7$ is even, using a direct proof.						

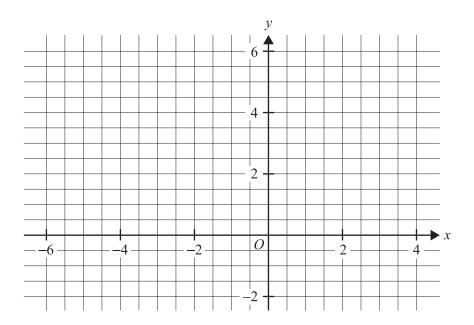
Question 3 (6 marks)

Let
$$f: R \setminus \{-1\} \to R$$
, $f(x) = \frac{(x-1)^2}{(x+1)^2}$.

The rule f(x) can be written in the form $f(x) = A + \frac{B}{x+1} + \frac{C}{(x+1)^2}$, where $A, B, C \in Z$.

a. Show that A = 1, B = -4 and C = 4.

1 mark


-		

b. The graph of f has one turning point.

Find the coordinates of this turning point.

· · · · · · · · · · · · · · · · · · ·

c. Sketch the graph of y = f(x) on the set of axes below. Label the asymptotes with their equations and the axial intercepts with their coordinates.

Question 4 (4 marks)

Find the angle between \underline{a} and \underline{b} .	2 marks
	_
	_
	_
	_
	=
	=
Find all possible values of n such that the dot product of \underline{a} and \underline{c} is equal to the	
magnitude of the cross product of $\underline{\tilde{a}}$ and $\underline{\tilde{c}}$.	2 marks
	_
	_
	_
	=
	_

The curve with equation $y = \sqrt{k - \frac{1}{x^2}}$, for $1 \le x \le \frac{k}{2}$ where k > 2, is rotated about the *x*-axis to form a solid of revolution that has volume $\frac{7\pi}{2}$ units³.

Show that k satisfies the equation $k^3 - 2k^2 - 9k + 4 = 0$.

Question 6 (5 marks)

The production of a brand of weed trimmer involves three stages, Stage 1, Stage 2 and Stage 3, which take W_1 hours, W_2 hours and W_3 hours, respectively. Here W_1 , W_2 and W_3 are independent random variables, which may be assumed to be normally distributed. Assume that Stage 2 starts immediately after Stage 1 ends and that Stage 3 starts immediately after Stage 2 ends.

The mean, standard deviation and cost at each stage are shown in the table below.

Stage	Time (h)	Mean (h)	Standard deviation (h)	Cost (\$/h)
1	W_1	1.0	0.3	10
2	W_2	1.5	0.4	20
3	W_3	2.0	0.5	15

Find the variance of the total cost to produce one weed trimmer.	Find the mean and the variance of the total time to produce one weed trimmer.	1 n
Find the variance of the total cost to produce one weed trimmer.		
Find the variance of the total cost to produce one weed trimmer.		
Find the variance of the total cost to produce one weed trimmer.		
Find the variance of the total cost to produce one weed trimmer.		
Find the variance of the total cost to produce one weed trimmer. 2 r		
		<u> </u>
	Find the variance of the total cost to produce one weed trimmer.	2 m
		<u> </u>

C.	If a single weed trimmer is produced, find the probability that the time spent at Stage 2 will be less than the time spent at Stage 1.	
	Give your answer correct to two decimal places.	
	Use $Pr(-1 < Z < 1) = 0.68$, where Z is the standard normal variable with mean 0 and standard deviation 1.	2 marks
		-
		-
		-
		-
		-
		-
		-

Question	7 (4	marks)
Question	1 (7	HIGHNO

Solve the differential equation $x + 2y\sqrt{x^2 + 1} \frac{dy}{dx} = 0$, expressing y as a function of x, given			
that $y(0) = -2$.			

Question 8 (4 marks)

Consider the relation $x^2y^2 + xy = 2$, where $x, y \in R$.

a. Using implicit differentiation, show that $\frac{dy}{dx} = -\frac{y}{x}$ given that $2xy \neq -1$.

2 marks

b. Find all points on the graph of $x^2y^2 + xy = 2$ where the slope of the tangent is equal to -1.

Question 9 (4 marks)

A car is travelling along a straight, flat road. The velocity, $v \text{ km h}^{-1}$, of the car and its position, x kilometres, are measured from the position on the road where x = 0.

The velocity v and the position x of the car are related by $v^2 = 1600 + \frac{672}{\pi} \arccos\left(\frac{x}{20}\right)$, where $-15 \le x \le 15$ and $v \ge 0$.

A speed detection device is positioned to detect the speed of a car as it passes the position x = 0. The speed limit on the road is 40 km h⁻¹.

The speed detection device will be activated if the car is travelling at 10% or more above the speed limit.

a. Determine, with evidence, whether the speed detection device will be activated.

1 mark

b. Find the acceleration of the car, in km h^{-2} , when x = 12.

Give your answer in the fo	orm $\frac{k}{-}$, w	here $k \in Z$	
	π		

^	40 /		
Question	10 (3	3 marks	١

Let the lines l_1 and l_2 be defined by

$$l_1: \underline{\mathbf{r}}_1(\lambda) = \underline{\mathbf{i}} + m\underline{\mathbf{k}} + \lambda(\underline{\mathbf{i}} + 2\underline{\mathbf{j}} + \underline{\mathbf{k}})$$
 and $l_2: \underline{\mathbf{r}}_2(\mu) = 2\underline{\mathbf{i}} - \underline{\mathbf{k}} + \mu(-\underline{\mathbf{i}} + 3\underline{\mathbf{j}} + 2\underline{\mathbf{k}})$, where $m \in R \setminus \left\{-\frac{4}{5}\right\}$ and $\lambda, \mu \in R$.

If the shortest distance between the two skew lines l_1 and l_2 is $\frac{14}{\sqrt{35}}$, find the values of m.

-		

Do not write in this area.

This page is blank.

Do not write in this area.

This page is blank.

Specialist Mathematics Examination 1

2024 Formula Sheet

You may keep this Formula Sheet.

Mensuration

area of a circle segment	$\frac{r^2}{2} (\theta - \sin(\theta))$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin\left(A\right)$
volume of a cone	$\frac{1}{3}\pi r^2 h$	sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
volume of a pyramid	$\frac{1}{3}Ah$	cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Algebra, number and structure (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$	$ z = \sqrt{x^2 + y^2} = r$	
$-\pi < \operatorname{Arg}(z) \le \pi$	$z_1 z_2 = r_1 r_2 \operatorname{cis} \left(\theta_1 + \theta_2 \right)$	
$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$	de Moivre's theorem	$z^n = r^n \operatorname{cis}(n \theta)$

Data analysis, probability and statistics

for independent random	$E(aX_1 + b) = a E(X_1) + a$ $E(a_1X_1 + a_2X_2 + + a$ $= a_1E(X_1) + a_2E(X_2) + a$	(nX_n)
variables $X_1, X_2,, X_n$	$\operatorname{Var}(aX_1 + b) = a^2 \operatorname{Var}($ $\operatorname{Var}(a_1 X_1 + a_2 X_2 + \dots +$ $= a_1^2 \operatorname{Var}(X_1) + a_2^2 \operatorname{Var}(X_1)$	*/
for independent identically	$E(X_1 + X_2 + \ldots + X_n)$	= ημ
distributed variables $X_1, X_2,, X_n$	$\operatorname{Var}(X_1 + X_2 + \ldots + X_n)$	$)=n\sigma^2$
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \overline{x} + z \frac{s}{\sqrt{n}}\right)$	
distribution of	mean	$E(\overline{X}) = \mu$
sample mean \overline{X}	variance	$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$

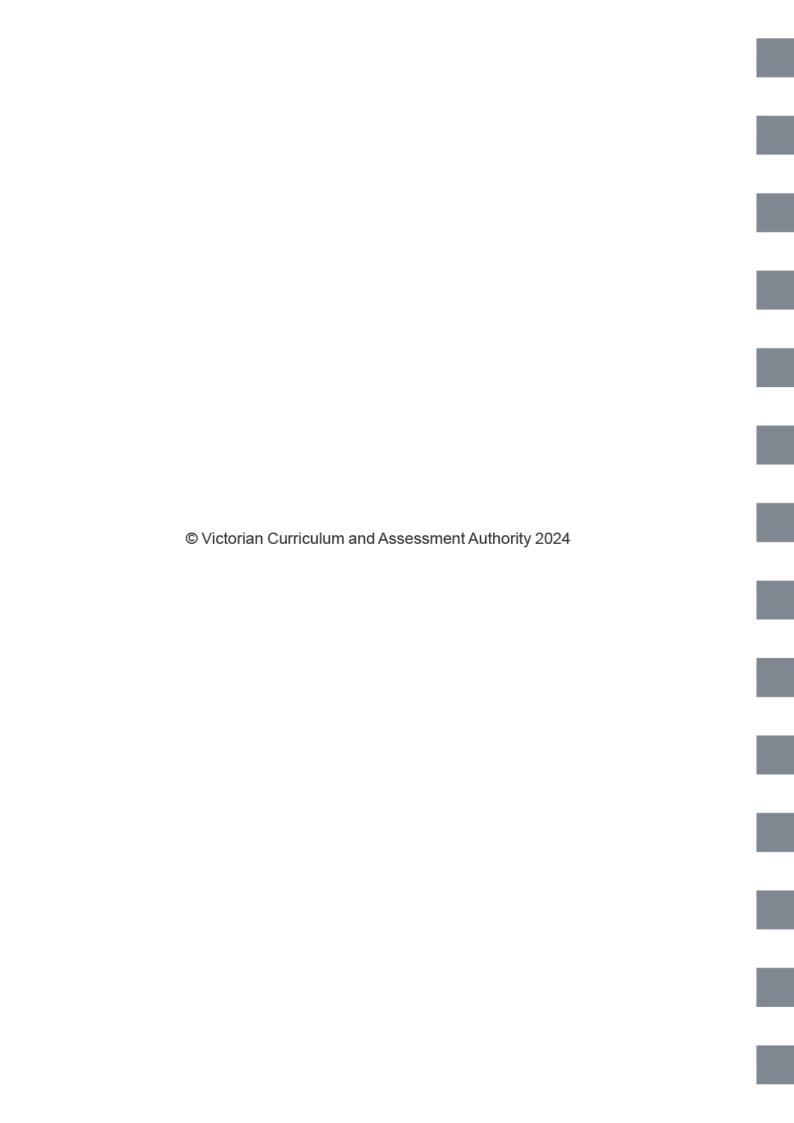
Calculus

$\frac{d}{dx}(x^n) = n x^{n-1}$	$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$
$\frac{d}{dx}\left(e^{ax}\right) = a e^{ax}$	$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$
$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$	$\int \frac{1}{x} dx = \log_e x + c$
$\frac{d}{dx}(\sin(ax)) = a\cos(ax)$	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$
$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$	$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$
$\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$	$\int \sec^2(ax) dx = \frac{1}{a} \tan(ax) + c$
$\frac{d}{dx}(\cot(ax)) = -a\csc^2(ax)$	$\int \csc^2(ax)dx = -\frac{1}{a}\cot(ax) + c$
$\frac{d}{dx}(\sec(ax)) = a\sec(ax)\tan(ax)$	$\int \sec(ax)\tan(ax)dx = \frac{1}{a}\sec(ax) + c$
$\frac{d}{dx}(\csc(ax)) = -a\csc(ax)\cot(ax)$	$\int \csc(ax)\cot(ax) dx = -\frac{1}{a}\csc(ax) + c$
$\frac{d}{dx}\left(\sin^{-1}(ax)\right) = \frac{a}{\sqrt{1-(ax)^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c, \ a > 0$
$\frac{d}{dx}\left(\cos^{-1}(ax)\right) = \frac{-a}{\sqrt{1-(ax)^2}}$	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a} \right) + c, \ a > 0$
$\frac{d}{dx}\left(\tan^{-1}(ax)\right) = \frac{a}{1+(ax)^2}$	$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$
	$\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c, n \neq -1$
	$\int \frac{1}{ax+b} dx = \frac{1}{a} \log_e ax+b + c$

Calculus – continued

product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$
quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
chain rule	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
integration by parts	$\int u \frac{dv}{dx} dx = u v - \int v \frac{du}{dx} dx$
Euler's method	If $\frac{dy}{dx} = f(x, y)$, $x_0 = a$ and $y_0 = b$, then $x_{n+1} = x_n + h$ and $y_{n+1} = y_n + h \times f(x_n, y_n)$.
arc length parametric	$\int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area Cartesian about <i>x</i> -axis	$\int_{x_1}^{x_2} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
surface area Cartesian about <i>y</i> -axis	$\int_{y_1}^{y_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$
surface area parametric about <i>x</i> -axis	$\int_{t_1}^{t_2} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$
surface area parametric about <i>y</i> -axis	$\int_{t_1}^{t_2} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

Kinematics


acceleration	$a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx}$	$=\frac{d}{dx}\left(\frac{1}{2}v^2\right)$
constant acceleration formulas	v = u + at	$s = ut + \frac{1}{2}at^2$
	$v^2 = u^2 + 2as$	$s = \frac{1}{2}(u+v)t$

Vectors in two and three dimensions

$\mathbf{r}(t) = x(t)\mathbf{j} + y(t)\mathbf{j} + z(t)\mathbf{k}$	$ \underline{\mathbf{r}}(t) = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}$
	$\dot{\underline{r}}(t) = \frac{d\underline{r}}{dt} = \frac{dx}{dt}\dot{\underline{i}} + \frac{dy}{dt}\dot{\underline{j}} + \frac{dz}{dt}\dot{\underline{k}}$
	vector scalar product $ \underline{\mathbf{r}}_{1} \cdot \underline{\mathbf{r}}_{2} = \left \underline{\mathbf{r}}_{1} \right \left \underline{\mathbf{r}}_{2} \right \cos(\theta) = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2} $
\perp and $\mathbf{r} - \mathbf{r} \mathbf{i} + \mathbf{v} \mathbf{i} + \mathbf{z} \mathbf{k}$	vector cross product $ \begin{vmatrix} \dot{\mathbf{r}} & \dot{\mathbf{j}} & \dot{\mathbf{k}} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = (y_1 z_2 - y_2 z_1) \dot{\mathbf{i}} + (x_2 z_1 - x_1 z_2) \dot{\mathbf{j}} + (x_1 y_2 - x_2 y_1) \dot{\mathbf{k}} $
vector equation of a line	$\mathbf{r}(t) = \mathbf{r}_1 + t\mathbf{r}_2 = (x_1 + x_2 t)\mathbf{i} + (y_1 + y_2 t)\mathbf{j} + (z_1 + z_2 t)\mathbf{k}$
parametric equation of a line	$x(t) = x_1 + x_2t$ $y(t) = y_1 + y_2t$ $z(t) = z_1 + z_2t$
vector equation of a plane	$ \tilde{\mathbf{r}}(s,t) = \tilde{\mathbf{r}}_0 + s\tilde{\mathbf{r}}_1 + t\tilde{\mathbf{r}}_2 = (x_0 + x_1 s + x_2 t)\hat{\mathbf{i}} + (y_0 + y_1 s + y_2 t)\hat{\mathbf{j}} + (z_0 + z_1 s + z_2 t)\hat{\mathbf{k}} $
parametric equation of a plane	$x(s, t) = x_0 + x_1 s + x_2 t, \ y(s, t) = y_0 + y_1 s + y_2 t, \ z(s, t) = z_0 + z_1 s + z_2 t$
Cartesian equation of a plane	ax + by + cz = d

Circular functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\sin(2x) = 2\sin(x)\cos(x)$	
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$
$\sin^2(ax) = \frac{1}{2} \left(1 - \cos(2ax) \right)$	$\cos^2(ax) = \frac{1}{2} \left(1 + \cos(2ax) \right)$

