

Victorian Certificate of Education 2018

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

Letter

STUDENT NUMBER

SPECIALIST MATHEMATICS Written examination 1

Tuesday 5 June 2018

Reading time: 2.00 pm to 2.15 pm (15 minutes) Writing time: 2.15 pm to 3.15 pm (1 hour)

QUESTION AND ANSWER BOOK

Structure of book

Number of	Number of questions	Number of
questions	to be answered	marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners and rulers.
- Students are NOT permitted to bring into the examination room: any technology (calculators or software), notes of any kind, blank sheets of paper and/or correction fluid/tape.

Materials supplied

- Question and answer book of 11 pages
- Formula sheet
- Working space is provided throughout the book.

Instructions

- Write your **student number** in the space provided above on this page.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- All written responses must be in English.

At the end of the examination

• You may keep the formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

THIS PAGE IS BLANK

2

Instructions

Answer **all** questions in the spaces provided.

Unless otherwise specified, an exact answer is required to a question.

In questions where more than one mark is available, appropriate working **must** be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8

Question 1 (3 marks)

A light inextensible string hangs over a frictionless pulley connecting masses of 3 kg and 7 kg, as shown below.

a. Draw all of the forces acting on the two masses on the diagram above.

b. Calculate the tension in the string.

2 marks

Question 2 (3 marks)

Let $\underline{a} = 3\underline{i} - 2\underline{j} + m\underline{k}$ and $\underline{b} = 2\underline{i} - \underline{j} + 3\underline{k}$, where $m \in R$.

Find the value(s) of m such that the magnitude of the vector resolute of a parallel to b is equal to $\sqrt{14}$.

Question 3 (3 marks)

Find $\sin(t)$ given that $t = \arccos\left(\frac{12}{13}\right) + \arctan\left(\frac{3}{4}\right)$.

Question 4 (4 marks)

Throughout this question, use an integer multiple of standard deviations in calculations. The standard deviation of all scores on a particular test is 21.0

a. From the results of a random sample of n students, a 95% confidence interval for the mean score for all students was calculated to be (44.7, 51.7).

Calculate the mean score and the size of this random sample.

b. Determine the size of another random sample for which the endpoints of the 95% confidence interval for the population mean of the particular test would be 1.0 either side of the sample mean.

2 marks

2 marks

Δ

4

 $\left(\frac{1}{x^2+2x+5}\right)dx.$

Question 5 (4 marks)

Evaluate $\int^{2\sqrt{3}-1}$

Question 6 (4 marks) Given that $y = (x - 1)e^{2x}$ is a solution to the differential equation $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} = y$, find the values of *a* and *b*, where *a* and *b* are real constants.

Question 7 (4 marks)

a. Find $\frac{d}{dx} \left((1-x^2)^{\frac{1}{2}} \right)$.

2 marks

٩

b. Hence, find the length of the curve specified by $y = \sqrt{1 - x^2}$ from $x = \frac{1}{2}$ to $x = \frac{\sqrt{3}}{2}$. Give your answer in the form $k\pi, k \in \mathbb{R}$.

2 marks

Question 8 (6 marks)

A circle in the complex plane is given by the relation $|z - 1 - i| = 2, z \in C$.

a. Sketch the circle on the Argand diagram below.

- **b. i.** Write the equation of the circle in the form $(x a)^2 + (y b)^2 = c$ and show that the gradient of a tangent to the circle can be expressed as $\frac{dy}{dx} = \frac{1 x}{y 1}$.
 - 2 marks

ii. Find the gradient of the tangent to the circle where x = 2 in the first quadrant of the complex plane.

1 mark

Δ

9

10

Qu	estior	9 (9 marks)	
a.	i.	Given that $\cot(2\theta) = a$, show that $\tan^2(\theta) + 2a \tan(\theta) - 1 = 0$.	2 marks
	ii.	Show that $\tan(\theta) = -a \pm \sqrt{a^2 + 1}$.	1 mark
	iii.	Hence, show that $\tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}$, given that $\cot(2\theta) = \sqrt{3}$, where $\theta \in (0, \pi)$.	1 mark
b.	Fine	If the gradient of the tangent to the curve $y = \tan(\theta)$ at $\theta = \frac{\pi}{12}$.	2 marks
		12	

Question 9 – continued

c. A solid of revolution is formed by rotating the region between the graph of $y = \tan(\theta)$, the horizontal axis, and the lines $\theta = \frac{\pi}{12}$ and $\theta = \frac{\pi}{3}$ about the horizontal axis. Find the volume of the solid of revolution.

3 marks

Victorian Certificate of Education 2018

SPECIALIST MATHEMATICS

Written examination 1

FORMULA SHEET

Instructions

This formula sheet is provided for your reference. A question and answer book is provided with this formula sheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Specialist Mathematics formulas

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$
curved surface area of a cylinder	$2\pi rh$
volume of a cylinder	$\pi r^2 h$
volume of a cone	$\frac{1}{3}\pi r^2 h$
volume of a pyramid	$\frac{1}{3}Ah$
volume of a sphere	$\frac{4}{3}\pi r^3$
area of a triangle	$\frac{1}{2}bc\sin(A)$
sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$

Circular functions

$\cos^2(x) + \sin^2(x) = 1$	
$1 + \tan^2(x) = \sec^2(x)$	$\cot^2(x) + 1 = \csc^2(x)$
$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$	$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$	$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$
$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$	$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$
$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$	
$\sin(2x) = 2\sin(x)\cos(x)$	$\tan\left(2x\right) = \frac{2\tan\left(x\right)}{1-\tan^2\left(x\right)}$

Circular functions – continued

Function	sin ⁻¹ or arcsin	\cos^{-1} or arccos	tan ⁻¹ or arctan
Domain	[-1, 1]	[-1, 1]	R
Range	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	[0, <i>π</i>]	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Algebra (complex numbers)

$z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\cos(\theta)$	
$\left z\right = \sqrt{x^2 + y^2} = r$	$-\pi < \operatorname{Arg}(z) \le \pi$
$z_1 z_2 = r_1 r_2 \operatorname{cis} \left(\theta_1 + \theta_2\right)$	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$
$z^n = r^n \operatorname{cis}(n\theta)$ (de Moivre's theorem)	

Probability and statistics

for random variables X and Y	E(aX+b) = aE(X) + b E(aX+bY) = aE(X) + bE(Y) $var(aX+b) = a^{2}var(X)$
for independent random variables X and Y	$\operatorname{var}(aX+bY) = a^2\operatorname{var}(X) + b^2\operatorname{var}(Y)$
approximate confidence interval for μ	$\left(\overline{x} - z\frac{s}{\sqrt{n}}, \ \overline{x} + z\frac{s}{\sqrt{n}}\right)$
distribution of sample mean \overline{X}	mean $E(\overline{X}) = \mu$ variance $var(\overline{X}) = \frac{\sigma^2}{n}$

Calculus

$$\begin{split} \frac{d}{dx}(x^n) &= nx^{n-1} \qquad \int x^n dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1 \\ \frac{d}{dx}(e^{xx}) &= ae^{ax} \qquad \int e^{xx} dx = \frac{1}{a}e^{xx} + c \\ \frac{d}{dx}(\log_e(x)) &= \frac{1}{x} \qquad \int \frac{1}{x} dx = \log_e|x| + c \\ \frac{d}{dx}(\sin(ax)) &= a\cos(ax) \qquad \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c \\ \frac{d}{dx}(\cos(ax)) &= -a\sin(ax) \qquad \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c \\ \frac{d}{dx}(\cos(ax)) &= -a\sin(ax) \qquad \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c \\ \frac{d}{dx}(\tan(ax)) &= a\sec^2(ax) \qquad \int \sec^2(ax) dx = \frac{1}{a}\tan(ax) + c \\ \frac{d}{dx}(\sin^{-1}(x)) &= \frac{1}{\sqrt{1-x^2}} \qquad \int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\cos^{-1}(x)) &= \frac{-1}{\sqrt{1-x^2}} \qquad \int \frac{-1}{\sqrt{a^2 - x^2}} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{1+x^2} \qquad \int \frac{a}{a^2 + x^2} dx = \tan^{-1}(\frac{x}{a}) + c, a > 0 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{a(x+b)^n} dx = \frac{1}{a(n+1)}(ax+b)^{n+1} + c, n \neq -1 \\ \frac{d}{dx}(\tan^{-1}(x)) &= \frac{1}{a(x+b)^{-1}} dx = \frac{1}{a}\log_e |ax+b| + c \\ \frac{d}{dx}(uv) &= u \frac{dv}{dx} + v \frac{du}{dx} \\ \frac{quotient}{ule} \qquad \frac{d}{dx}(\frac{u}{v}) &= \frac{v \frac{dv}{dx} - u \frac{dv}{dx} \\ \frac{du}{dx} = \frac{dy}{u} \frac{du}{dx} \\ \hline \text{Euler's method} \qquad \text{If } \frac{dy}{dx} = f(x), x_0 = a \text{ and } y_0 = b, \text{ then } x_{n+1} = x_n + h \text{ and } y_{n+1} = y_n + hf(x_n) \\ acceleration \qquad a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v \frac{dv}{dx} = \frac{d}{dx} (\frac{1}{2}v^2) \\ arc \ \text{ length} \qquad \int_{x_n}^{x_n} \sqrt{1 + (f'(x))^2} dx \ or \int_{x_n}^{x_n} \sqrt{(x'(t))^2 + (y'(t))^2} dt \\ \end{cases}$$

Vectors in two and three dimensions

$$\mathbf{r} = x\mathbf{j} + y\mathbf{j} + z\mathbf{k}$$

$$|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2} = r$$

$$\mathbf{\dot{r}} = \frac{d\mathbf{r}}{dt} = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}$$

$$\mathbf{r}_1 \cdot \mathbf{r}_2 = r_1r_2\cos(\theta) = x_1x_2 + y_1y_2 + z_1z_2$$

Mechanics

momentum	$\mathbf{p} = m\mathbf{y}$
equation of motion	$\mathbf{R} = m\mathbf{a}$