

VCE Systems Engineering

Written examination – End of year

Sample questions

These sample questions are intended to demonstrate how new aspects of Units 3 and 4 of VCE Systems Engineering may be examined. They do **not** constitute a full examination paper.

SECTION A - Multiple-choice questions

Question 1

A lift has a mass of 1000 kg. It is pulled up by a force of 19600 N.

The acceleration of the lift is

- **A.** 9.8 m s⁻²
- **B.** 19.6 m s⁻²
- **C.** 1000 m s⁻²
- **D.** $19\,600 \text{ m s}^{-2}$

Question 2

In Australia, the nominal mains voltage is 230 V.

The value normally stated when referring to this voltage is

- A. peak value.
- B. RMS value.
- C. average value.
- **D.** instantaneous value.

Question 3

The device shown in the diagram above is a

- A. Zener diode.
- **B.** signal diode.
- C. photodiode.
- **D.** phototransistor.

Question 4

Devices such as printers rely on motors that can provide precise positioning. Which one of the following motors would be best at providing precision positioning?

- A. servomotor
- B. stepper motor
- C. brushed DC motor
- **D.** brushless DC motor

Question 5

A solar panel system is to be designed to produce electrical energy.

In Australia, the best orientation for the panels would be facing

- A. east.
- **B.** west.
- C. north.
- **D.** south.

SECTION B

Question 1 (3 marks)

A coil is rotated in a magnetic field that is perpendicular to the area of the coil, as shown in Figure 1.

a. On the axes provided below, draw the shape of the resulting voltage. 1 mark

b. Name the factors that would have determined the magnitude of the voltage produced. 2 marks

Question 2 (3 marks)

Figure 2 shows the output voltage produced by a faulty bridge rectifier.

Figure 2

a.	Name one component of the bridge rectifier that is faulty.	1 mark
b.	Explain how an oscilloscope can be used to find a faulty component.	2 marks
Qu A 3 a.	estion 3 (2 marks) A relay is rated at 24 V. Calculate the amount of power that can be switched through the relay.	1 mark
b.	The same relay is also able to switch a current of 1.5 A. What is the DC voltage at which this current can be switched?	1 mark

Question 4 (2 marks)

Consider the circuit shown in Figure 3.

a. What will happen when the push-button switch, A, is actuated in this circuit?
b. Name the type of relay used in Figure 3.
Question 5 (2 marks)
Explain how the angle of rooftop solar panels can affect the efficiency of the electricity produced by the solar panels.

Question 6 (3 marks)

Explain the benefits of incorporating an open-source model in the development of an integrated and controlled system.

Question 7 (3 marks)

Describe how solenoids are used in an automatic irrigation sprinkler.

Question	8	(4	marks)
----------	---	----	--------

a.	Explain why AC	generators are the most comn	nonly used electrical generators.	2 marks
	Emplain migric		abeu electrical generators.	

		_
b.	Describe the advantages of AC generators in comparison to dynamos and DC generators.	2 marks
Qu Nai	estion 9 (3 marks) ne a device used to transform each of the following forms of energy into electrical energy.	_
•	Solar energy	_

Mechanical energy ______

Question 10 (4 marks)

A new technology company, in the field of solar energy, has applied cradle-to-cradle (C2C) analysis to the design and manufacture of its photovoltaic panels.

Discuss the advantages and disadvantages of using C2C analysis.

Question 11 (5 marks)

Agriculture has been nominated as a highly significant growth area for Australia's future economy. Robotics is an example of a new technology that is increasingly being used in Australia's agricultural industry.

Analyse the potential for the use of robotics in the agricultural industry. In your response, include a description of **one** possible application of agricultural robotics and comment on the likely impact of using robotics in the agricultural industry.

Answers to multiple-choice questions

Question	Answer
1	A
2	В
3	С
4	В
5	С