SYSTEMS ENGINEERING

Written examination

FORMULA SHEET

Instructions

Please remove from the centre of this book during reading time. This formula sheet is provided for your reference.

Systems Engineering formulas

Mechanical

efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100\%$	$efficiency_{total} = efficiency_1 \times efficiency_2$		
F = ma	force due to gravity = mass $\times \frac{\text{acceleration}}{\text{due to gravity}}$		
$P = \frac{W}{t}$	work done = $\frac{\text{force in}}{\text{direction moved}} \times \text{distance}$		
torque = twisting force × perpendicular distance to pivot point	moment = force × perpendicular distance to pivot point		
$F_1 d_1 = F_2 d_2$	$P = \frac{F}{A}$		
speed = $\frac{\text{distance}}{\text{time}}$	mechanical advantage = $\frac{\text{load}}{\text{effort}}$		
gear ratio final = gear ratio $1 \times$ gear ratio 2	gear or pulley ratio = $\frac{\text{speed of driver (rpm)}}{\text{speed of driven (rpm)}}$		
Gear A rpm _ Gear B number of teeth	Pulley A rpm diameter of Pulley B		
$\overline{\text{Gear B rpm}} = \overline{\text{Gear A number of teeth}}$	$\frac{1}{\text{Pulley B rpm}} = \frac{1}{\text{diameter of Pulley A}}$		
velocity ratio = $\frac{\text{distance moved by effort}}{\text{distance moved by load}}$			

Electrical

electrical energy efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100\%$		$I = \frac{V}{R}$		
P = VI		$P = \frac{E}{t}$		
$f = \frac{1}{T}$		$V_{\rm x} = \frac{R_{\rm x}}{R_{\rm total}} \times V_{\rm supply}$		
$\frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{I_2}{I_1}$		$V_{\text{peak}} = \sqrt{2}V_{\text{RMS}}$		
resistors in series	$R_t = R_1 + R_2 + R_3 + \dots$	resistors in parallel	$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	
two resistors in parallel	$R_t = \frac{R_1 \times R_2}{R_1 + R_2}$	capacitors in series	$\frac{1}{C_t} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$	
capacitors in parallel	$C_t = C_1 + C_2 + C_3 + \dots$			

General

area of circle = $\pi r^2 (\pi = 3.14)$

circumference of circle = $2\pi r$

Resistor colour codes

Colour	Value	Colour	Value	Colour	Tolerance
black	0	green	5	brown	1%
brown	1	blue	6	red	2%
red	2	violet	7	gold	5%
orange	3	grey	8	silver	10%
yellow	4	white	9		