STUDENT NUMBER

| Figures |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Words | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

\square

VCE VET ELECTRONICS
 Written examination

Friday 31 October 2003
Reading time: 3.00 pm to 3.15 pm (15 minutes)
Writing time: 3.15 pm to 4.45 pm (1 hour 30 minutes)

QUESTION AND ANSWER BOOK

Structure of book			
Section	Number of questions	Number of questions to be answered	Number of marks
1 - DC power supplies	5	5	35
2 - Analogue systems	8	8	26
3 - Digital electronics 1 and	8	8	52
Digital systems			Total 113

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, an approved graphics calculator (memory cleared) and/or one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 23 pages including a formula sheet for Sections 1, 2 and 3 on page 23.

Instructions

- Write your student number in the space provided above on this page.
- Answer all questions in the spaces provided in this book.
- Note: There are no separate items for Mathematics for Electronics 2. Understanding of mathematics has been incorporated into the questions in Sections 1-3.
- State all formulas and calculations.
- All units must be specified in the answers.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic communication devices into the examination room.

SECTION 1 - DC Power supplies

Question 1

A small power diode is shown in Figure 1.

Figure 1
a. Draw an arrow on Figure 1, indicating the direction of conventional current flow through the diode, and label the anode and cathode.
b. Draw the matching standard symbol for a diode with the same orientation.

Question 2

A simple circuit for an indicator LED is shown in Figure 2.

Figure 2
Calculate the LED current.
Formula(s), calculations and correct units must be shown to obtain full marks.

Question 3

$$
\text { Use the following information to answer parts } a .-f \text {. }
$$

A basic rectifier circuit is shown in Figure 3.
Assume an ideal diode $\left(\mathrm{V}_{\mathrm{f}}=0\right.$ Volts) for all your calculations.

Figure 3
a. State the voltage ratio of the transformer.
b. The most appropriate diode to use for the application shown in Figure 3 is
A. 1 N 914
B. $\quad 1 \mathrm{~N} 4004$
C. $1 \mathrm{~N} 5245 \mathrm{~B}(400 \mathrm{~mW}, 15 \mathrm{~V}$ zener $)$
D. BZX85C75 (1 W, 75 V zener)

c. Calculate the period of the waveform over one complete cycle. Correct units must be stated in the answer.
d. Calculate the peak secondary voltage Vs. Correct units must be stated in the answer.
e. Calculate the DC (average) load voltage. Correct units must be stated in the answer.
f. On the axes provided below, sketch the expected load voltage waveform. Show at least one full cycle of the waveform. Fill in appropriate values for peak voltage and time on each axis.

Question 4

$$
\text { Use the following information to answer parts } a .-f \text {. }
$$

The circuit in Figure 4 is an incomplete variable DC power supply, which uses a LM317T regulator IC.

Figure 4
a. Complete the circuit diagram (Figure 4) above by adding the following missing components in the correct position and configuration/polarity.

- power diode
- main filter capacitor

$$
2+2=4 \text { marks }
$$

b. Given that $\mathrm{V}_{\text {reg }}=1.25 \mathrm{~V}$, calculate the current through R_{V} (Neglect any effect of $\mathrm{I}_{\text {adj }}$) Correct units must be stated in the answer.
c. Calculate $\mathrm{V}_{\text {out }}$ when R_{V} is set to 700Ω.

Formula(s), calculations and correct units and the working out must be shown to obtain full marks.
d. R_{V} has been adjusted. Given the working circuit has a V_{in} of 18 V to the regulator and $\mathrm{V}_{\text {out }}$ of 8.5 V , determine the $V_{\text {drop }}$ across the regulator. Correct units must be stated in the answer.

2 marks
e. Given that $\mathrm{I}_{\mathrm{L}}=0.6 \mathrm{~A}$, calculate the power dissipation of the regulator. Correct units must be stated in the answer.

2 marks
f. Outline the sequence of events at the regulator if R_{L} suddenly fell to 0.2Ω.
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

Question 5

Modern electronic equipment uses high frequency Switch Mode Power Supplies (SMPS).
State two advantages of SMPS in comparison to conventional linear power supplies.
i.
ii. \qquad
2 marks
Total 35 marks

This page is blank

SECTION 2 - Analogue systems

Question 1

a. State the resistance value of the surface mount resistor shown below, using correct engineering notation.

```
104
```

\qquad
b. A capacitor has the figures 104 K printed on it.

What is the nominal capacitance value?
A. 100 nf
B. 104 nf
C. 104 pf
D. $\quad 10000 \mathrm{pf}$

Question 2

a. A resistor has the following colour bands: Red Red Red Red.

The nominal resistance value is
A. 220Ω
B. $2 \mathrm{k} 2 \Omega$
C. 22Ω
D. $22 \mathrm{k} \Omega$

b. A resistor has the following colour bands: Yellow Violet Black Gold.

The nominal resistance value is
A. 47Ω
B. 471Ω
C. $470 \mathrm{k} \Omega$
D. $47 \mathrm{k} \Omega$

Question 3

A single loop conductor is rotating at a uniform rate in a magnetic field in Figure 5.

Figure 5

From the waveforms shown below, select the waveform that would be produced within the conductor.
A.

B.

C.

D.

\square

1 mark

Question 4

Figure 6
State the type of modulation represented by the waveform in Figure 6.

Question 5

In electronics, the term transducer refers to a device that converts one form of energy into another form.
Identify three different transducers that you have used in electronics and state the device, the energy input and the desired output.
The Piezo Effect Sparker has been provided as an example.

transducer device	energy input	output
Piezo Effect Sparker	Applied mechanical force	High voltage spark
1		
2		
3		

6 marks

Question 6

Figure 7 is a diagram of a 6 Volt DC electric doorbell.

Figure 7
a. Describe in detail the sequence of operation of the circuit. Your answer must include the process of how the bells are made to ring when power is supplied to the circuit.
Your response may be in point form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4 marks
b. On the axes below, draw the basic shape of the waveform and indicate the voltage levels at the input to the solenoid when the bells are ringing.

c. Which type of switch is most appropriate to use at the front door for this doorbell?
A. SPDT
B. DPDT
C. Momentary PB N/O
D. Momentary PB N/C

1 mark

Question 7

Figure 8 shows a 555 timer configured as an astable oscillator.
The period of the waveform (T) can be determined by components $\mathrm{R}_{1}, \mathrm{R}_{2}$ and C_{1} using the formula

$$
T=0.694\left(R_{1}+2 R_{2}\right) C
$$

Base units must be used for the calculation.
Where T - Seconds (one complete cycle)
R - Ohms
C - Farads

Figure 8
a. Calculate T when $\mathrm{R}_{1}=1.5 \mathrm{M} \Omega, \mathrm{R}_{2}=220 \mathrm{k} \Omega$ and $\mathrm{C}_{1}=150 \mathrm{nF}$

The formula used, calculations and correct unit must be shown to obtain full marks.
b. The waveform produced by the 555 circuit is drawn below.

Clearly indicate on the waveform the period \mathbf{T}, the mark and the space parts of the waveform.

Question 8

The response curve for a loudspeaker is shown in Figure 9.

Figure 9
a. State the frequency range where the speaker performs best.
\qquad
1 mark
b. The speaker is used in a speaker box with crossover circuits to supply separate speakers within the box. What specific application would this speaker perform within the system?

1 mark
Total 26 marks

SECTION 3 - Digital electronics 1 and Digital systems

Use the following information to answer Question 1.

Question 1

a. On each diagram shown below, complete the wiring of the gates to perform the
logic $O R$ function $\quad(A+B=\mathbf{Q})$
No additional gates are to be added.
i. Using the MM74C02 (2 gates)

ii. Using the MM74C00 (3 gates)

$$
2+3=5 \text { marks }
$$

b. State three benefits of using the MM74C00 over the logically equivalent TTL IC (7400).

1. \qquad
2. \qquad
3. \qquad
3 marks

Question 2

Figure 10
a. Identify the gate types in Figure 10.

Gate number	Gate type
Gate 1	
Gate 2	
Gate 3	
Gate 4	

b. Determine the unsimplified Boolean expression of the gate diagram shown in Figure 10.

Question 3

Complete the following number conversions.

Decimal	Binary	BCD
$\mathbf{1 9 9}$		

Hexadecimal	Binary	Decimal
FEED		

Question 4

Figure 11

Determine the total number of different analogue output levels that a 32 bit input DAC could produce as shown in Figure 11.

Question 5

Figure 12

The waveform shown in Figure 12 is digitalised by an ADC.
a. What do the letters ADC stand for?
b. Determine the digital code produced from an input voltage of 32 V .

Question 6

a. What do the letters ESD stand for?
\qquad
b. From the list of items used in the workplace below,

- indicate items used to minimise ESD problems with a tick (\checkmark).
- indicate items that could create ESD problems with a cross (\times).

Air dehumidifier	\square	Wrist strap - earthed	\square
Metallised (grey) plastic bags	\square	Grounded soldering iron tips	\square
Grounded metal workbenches	\square		Nylon floor carpet
Polystyrene plastic packaging	\square		\square

c. From the list of components used in the workplace below,

- indicate components likely to be damaged by ESD with a tick (\checkmark).
- indicate components unlikely to be affected by ESD with a cross (\mathbf{x}).

MOS devices	\square	High wattage resistors	\square
TTL ICs	\square	BC109 transistors	\square
CMOS ICs	\square	Microprocessor chips	\square

Question 7

Home Internet access has become increasingly popular over recent years and a variety of methods to connect to ISPs are available.
a. What do the letters ISP stand for?
\qquad
1 mark
b. State two commonly recognised advantages of ADSL over a standard Dial Up connection.
\qquad
\qquad
2 marks

Question 8

The American standard code for information interchange is referred to as the ASCII code.

Last 4 bits	010	011	100
0000	SP	0	@	
0001	!	1	A
0010	"	2	B
0011	\#	3	C	
0100	\ldots	\$	4	D

Figure 13
a. For each of the ASCII codes provided in the table below
i. determine the character produced by the code
ii. convert the code to a hexadecimal number
iii. convert the code to a decimal number.

	ASCII	Character	Hexadecimal	Decimal
Sample	0110000	0	30	48
1	0100011			
2	0110100			
3	1000001			

9 marks
b. How many bits would need to be added to each ASCII binary number to make it exactly one byte of data?
\qquad
1 mark
Total 52 marks

Formulas

$V=I R$
$I=\frac{V}{R}$
$\mathrm{V}_{\mathrm{pk}}=\sqrt{2} \mathrm{~V}_{\mathrm{RMS}}$
$\mathrm{V}_{\mathrm{DC}\left(\frac{1}{2} \text { wave }\right)}=\frac{1}{\pi} \mathrm{~V}_{\mathrm{pk}}$
$\mathrm{V}_{\text {reg. }}=\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }}$
$\mathrm{P}=\mathrm{V} \times \mathrm{I}$
$\mathrm{N}=2^{\text {(no. of bits) }}-1$
$\mathrm{f}=\frac{1}{\mathrm{~T}} \quad \mathrm{~T}=\frac{1}{\mathrm{f}}$

