# VCE VET INTEGRATED TECHNOLOGIES <br> Written examination 

Thursday 10 November 2016
Reading time: 9.00 am to 9.15 am ( 15 minutes)
Writing time: 9.15 am to $\mathbf{1 0 . 4 5}$ am ( $\mathbf{1}$ hour $\mathbf{3 0}$ minutes)

## QUESTION AND ANSWER BOOK

Structure of book

| Section | Number of <br> questions | Number of questions <br> to be answered | Number of <br> marks |
| :---: | :---: | :---: | :---: |
| A | 20 | 20 | 20 |
| B | 10 | 10 | 80 |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or correction fluid/tape.


## Materials supplied

- Question and answer book of 24 pages.
- Detachable insert of miscellaneous formulas in the centrefold.
- Answer sheet for multiple-choice questions.


## Instructions

- Write your student number in the space provided above on this page.
- Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this.
- Unless otherwise indicated, the diagrams in this book are not drawn to scale.
- All written responses must be in English.


## At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the detached insert.


## Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

## SECTION A - Multiple-choice questions

## Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.
Choose the response that is correct or that best answers the question.
A correct answer scores 1 ; an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

## Question 1

A fire is discovered in a rubbish bin in a back storeroom.
The first action of a nearby worker should be to
A. raise the alarm and inform the other workers.
B. run to the corridor and get the fire extinguisher.
C. close the door firmly to reduce the available oxygen.
D. go further into the storeroom to investigate the source of the fire.

## Question 2



What is the name of the tool shown above?
A. wire strippers
B. long-nose pliers
C. side-cutting pliers
D. general-purpose electronic pliers

## Question 3

When placing components and trimming component leads on a Printed Circuit Board (PCB), the minimum personal protective equipment ( PPE ) required is
A. safety glasses.
B. a full face mask.
C. safety glasses, earplugs and safety boots.
D. safety glasses and a high-visibility vest.

## Question 4

Which one of the following represents the smallest capacitance value?
A. $\quad 18 \mu \mathrm{~F}$
B. $\quad 1900 \mathrm{nF}$
C. 21000 pF
D. $\quad 0.0037 \mu \mathrm{~F}$

## Question 5

ELV stands for
A. extra low voltage.
B. elevated level voltage.
C. extremely low voltage.
D. Electrical Licensing Victoria.

## Question 6

Which one of the following devices produces non-visible light?
A. a red light-emitting diode (LED)
B. an infra-red LED
C. a filament lamp
D. a compact fluorescent lamp (CFL)

## Question 7

Which battery is classed as a secondary cell?
A. lithium battery
B. alkaline battery
C. carbon-zinc battery
D. lithium-ion battery

## Question 8

What is the mains voltage supplied from a standard power point in Australia?
A. $230 \mathrm{~V}_{\mathrm{DC}}$
B. $240 \mathrm{~V}_{\mathrm{DC}}$
C. $230 \mathrm{~V}_{\mathrm{AC}} 50 \mathrm{~Hz}$
D. $240 \mathrm{~V}_{\mathrm{AC}} 100 \mathrm{~Hz}$

## Question 9

Which one of the following represents the largest resistance value?
A. $\quad 56 \mathrm{M} \Omega$
B. $\quad 590 \mathrm{k} \Omega$
C. $\quad 5800 \mathrm{k} \Omega$
D. $54500000 \Omega$

## Question 10

Power transmission lines deliver high-voltage electricity.
The principal reason for them delivering high-voltage electricity is that the
A. voltages delivered can be used directly in households.
B. losses on the transmission lines are lower at higher voltages.
C. resistance of the transmission lines decreases as the voltage increases.
D. conductivity of the transmission lines increases as the voltage increases.

## Question 11

Mains power from electrical distributors is supplied to residential suburbs as
A. single-phase AC voltage.
B. single-phase DC voltage.
C. three-phase AC voltage.
D. two-phase AC voltage.

## Question 12

Supercapacitors, also called ultracapacitors, are
A. able to maintain a constant voltage during discharge.
B. made by placing two or more electrolytic capacitors in series.
C. used in battery-powered vehicles and hybrids, as they are cheaper than lithium-ion batteries.
D. used in hybrid vehicle regenerative braking systems to capture energy from the electric motors.

## Question 13

Lithium-ion batteries are used extensively in electronic devices such as phones, drones and tablets. The most likely reason for this is that they
A. have high energy density and tiny memory effect.
B. can be discharged to zero volts with no damage to the battery.
C. can operate safely for long periods in high-temperature environments.
D. are also used in battery-operated vehicles to give recharge times of less than 10 seconds.

## Question 14



The device circled in the image above is commonly used on power supply cables.
The device
A. provides strain relief for the power supply cable.
B. contains electronic circuitry that maintains a steady voltage to the connected equipment.
C. prevents high-frequency electrostatic interference from reaching the connected equipment.
D. holds a ferrite core to supress high-frequency electromagnetic interference, both to and from the connected equipment.

## Question 15

Which one of the following statements about batteries is correct?
A. Carbon and alkaline batteries are used for off-grid storage in remote areas.
B. Lead-acid and nickel-cadmium batteries are known as primary storage devices.
C. A lithium-ion battery can become warm due to the battery's internal resistance.
D. Nickel-iron batteries are used in laptops due to their high cell density and unlimited recharge capacity.

## Question 16



What is the total capacitance of the circuit above?
A. $278 \mu \mathrm{~F}$
B. $\quad 1150 \mu \mathrm{~F}$
C. 1150 mF
D. $2128 \mu \mathrm{~F}$

## Question 17



When switch $S_{1}$ in the circuit above is closed, fuse $F_{1}$ blows instantly.
Switching $\mathrm{S}_{1}$ 'off', replacing the fuse and closing switch $\mathrm{S}_{1}$ again causes the fuse to immediately blow. Which equipment, test and result would locate the fault while $S_{1}$ is open?
A.

| Equipment and test | Test result |
| :--- | :---: |
| insulation-resistance (IR) tester set on 500 V <br> range and test between A and B | $2 \Omega$ |
| multimeter set on ohms range and test <br> between A and B | $0 \Omega$ |
| multimeter set on $\mathrm{V}_{\mathrm{DC}}$ range to measure the <br> voltage across switch $\mathrm{S}_{1}$ | $12 \mathrm{~V}_{\mathrm{DC}}$ |
| multimeter set on $\mathrm{V}_{\mathrm{DC}}$ <br> voltage across fuse $\mathrm{F}_{1}$ | $12 \mathrm{~V}_{\mathrm{DC}}$ |

## Question 18



In the circuit above, the voltmeter reading is $30 \mathrm{~V}_{\mathrm{DC}}$.
What does this reading indicate?
A. $\quad 100 \mathrm{~mA}$ is flowing in the circuit.
B. The circuit is operating as it was designed.
C. The supply voltage $\mathrm{V}_{\mathrm{S}}$ has doubled.
D. Resistor $\mathrm{R}_{2}$ has become an open circuit ( OC ).

## Question 19

An IR tester is set to 500 V IR range.
Which of the following are the correct IR test result and comment for the test being carried out?

|  | Item under test | Test result | Comment |
| :--- | :--- | :---: | :--- |
| A. | electronic appliance between active and earth | $0 \Omega$ | 'test and tag' purposes |
| B. | flexible extension lead between active and earth | $0 \Omega$ | open circuit |
| C. | flexible extension lead between neutral and earth | $0 \Omega$ | short circuit |
| D. | flexible extension lead between neutral and active | $50 \mathrm{M} \Omega$ | open circuit |
|  |  |  |  |

## Question 20

What is the Australian standard cable colour for the active wire in a 3-core flexible extension lead?
A. blue
B. black
C. brown
D. green with a yellow stripe

## SECTION B

## Instructions for Section B

Answer all questions in the spaces provided.
Formulas must be relevant to the calculations. Calculations must be shown.
All units must be specified in correct engineering notations in the answers.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.

## Question 1 (8 marks)

Figure 1 shows a range of symbols for electrical components.


Figure 1
Match eight of the symbols from Figure 1 to the components listed in the table below. Write the corresponding letter for each symbol in the space provided.

| Component | Symbol letter | Component | Symbol letter |
| :--- | :--- | :--- | :--- |
| circuit breaker |  | potentiometer |  |
| rectifier diode |  | fuse |  |
| transformer |  | light-emitting diode <br> (LED) |  |
| SPST switch |  | PTC resistor |  |

## Question 2 (7 marks)

A factory worker on a job site discovers an apprentice electrician lying on the floor near the main switchboard. The apprentice appears to be unconscious.
The factory worker immediately carries out the basic life support 'DRSABCD' action plan.
In the table below, give the corresponding term for each letter and describe an appropriate action to be taken in each case.

| Letter | Corresponding term | Action to be taken |
| :---: | :--- | :--- |
| D |  |  |
| R |  |  |
| S |  |  |
| A |  |  |
| B |  |  |
| C |  |  |
| D |  |  |

Question 3 (8 marks)
a. Complete the table below by identifying the colour code or value of the resistors A to F. 6 marks

|  | Band colours |  |  |  | Resistance | Tolerance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Resistor | First | Second | Third | Fourth |  |  |
| A |  |  |  |  | $1 \mathrm{k} \Omega$ | $10 \%$ |
| B |  |  |  |  | $8.2 \Omega$ | $5 \%$ |
| C |  |  |  |  | $100 \mathrm{k} \Omega$ | $1 \%$ |
| D |  |  |  |  | $6.8 \mathrm{M} \Omega$ | $5 \%$ |
| E | white | brown | yellow | gold |  |  |
| F | red | violet | brown | silver |  |  |

b. There are many types of resistors available in different wattages and values.

In the table below, name two different types of resistors and describe their usage.

| Resistor | Type of resistor | Usage |
| :---: | :---: | :---: |
| 1 |  |  |
| 2 |  |  |

## Question 4 (5 marks)

Railway authorities are becoming increasingly concerned about the theft of copper cables that are used to provide high voltage (HV) to electric trains. The theft of copper cables worth a few hundred dollars can result in shutdowns that cost millions of dollars.
One method of solving this problem is to replace the copper cables with a cheaper alternative that also has good conductive properties.

Table 1 below lists the resistivity of a number of metals.
Table 1

| Metal | Resistivity $\mathbf{( \rho )} \mathbf{\Omega} \mathbf{m} @ \mathbf{2 0}{ }^{\circ} \mathbf{C}$ |
| :--- | :---: |
| aluminium alloy | $2.82 \times 10^{-8}$ |
| copper | $1.72 \times 10^{-8}$ |
| mild steel | $1.5 \times 10^{-7}$ |
| silver | $1.59 \times 10^{-8}$ |

a. Which metal in Table 1 has the lowest resistivity?
$\qquad$
b. What does the term 'metal alloy' mean?
$\qquad$
c. Aluminium alloy cables are being used to replace the copper cables.

How might the resistivity of the aluminium alloy cable affect the size of the cables used? Refer to the information in Table 1.
$\qquad$
d. Mild steel would be a very inexpensive material to use for the cables, but its use would have some major drawbacks.

Provide two reasons why mild steel cables should not be used.
Reason 1 $\qquad$
$\qquad$

Reason 2 $\qquad$
$\qquad$

Question 5 (8 marks)
Refer to the circuit diagram shown in Figure 2 below.


Figure 2
a. How many diodes are conducting in the circuit?
b. If each of the diodes has a voltage drop of 0.6 V when conducting, determine the voltage shown on voltmeter $\mathrm{V}_{\mathrm{A}}$. Show your working.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
c. Push-button switch $S_{1}$ is pressed.
i. Describe the effect on lamp $\mathrm{LP}_{1}$.
$\qquad$
$\qquad$
ii. If the operation of lamp $\mathrm{LP}_{1}$ is affected, what causes this?
$\qquad$
$\qquad$
iii. What are the readings on voltmeters $\mathrm{V}_{\mathrm{A}}$ and $\mathrm{V}_{\mathrm{B}}$ ?
$\qquad$
$\qquad$

## Question 6 (8 marks)

A trailer requires wiring to a 7-pin plug and a vehicle requires wiring to a 7-pin trailer socket.
The diagram in Figure 3 shows a vehicle's rear tail-light system with an unwired 7-pin vehicle trailer socket.
Table 2 shows the lighting connection for the vehicle trailer socket and plug.


Figure 3

Table 2

| Pin | Connection |
| :---: | :--- |
| 1 | left indicator lamp |
| 2 | reversing lamp |
| 3 | earth |
| 4 | right indicator lamp |
| 5 | NC |
| 6 | stop lamp |
| 7 | tail lamp |

SECTION B - Question 6 - continued
a. On the diagram in Figure 3, draw all wiring connections between the vehicle's tail-light assemblies and the 7-pin vehicle trailer socket.
b. The diagram in Figure 4 shows an unwired trailer tail-light system and a 7-pin trailer plug.

Referring to Table 2, draw on the diagram in Figure 4 all the wiring connections between the trailer's tail-light assemblies and the 7-pin trailer plug. The trailer lights must operate correctly when the trailer is connected to the vehicle.


Figure 4

## Question 7 (10 marks)

Refer to the circuit diagram shown in Figure 5 below. Note that $V_{R 2}$ is $20 \mathrm{~V}_{\mathrm{DC}}$.


Figure 5
a. Find the supply current I. Show your working.
$\qquad$
$\qquad$
$\qquad$
b. Find the total resistance of the circuit $\left(\mathrm{R}_{\text {total }}\right)$. Show your working.
$\qquad$
$\qquad$
c. Find the supply voltage $\mathrm{V}_{\mathrm{S}}$. Show your working.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
d. Find the total power dissipated in the circuit. Show your working.
e. What is the minimum power rating that would be required for resistor $\mathrm{R}_{2}$ to function correctly in the circuit? Show your working.
$\qquad$
$\qquad$
$\qquad$

## Question 8 (9 marks)

a. Refer to Figure 6 below. When connected, switch $S_{1}$ will turn on lamp $L P_{1}$ and switch $S_{2}$ will turn on lamp $\mathrm{LP}_{2}$.


Figure 6
i. Draw the circuit connections on Figure 6 so that each lamp will operate correctly. 3 marks
ii. Calculate the total current when both lamps are on. Show your working.

2 marks
$\qquad$
$\qquad$
$\qquad$
b. In the circuit diagram shown in Figure 7 below, $\mathrm{I}_{1}$ is 200 mA and the power dissipated by $\mathrm{R}_{3}$ is 2 W .


Figure 7
i. Find the resistance of $\mathrm{R}_{1}$. Show your working.
$\qquad$
$\qquad$
ii. Find the total resistance of the circuit $\left(\mathrm{R}_{\text {total }}\right)$. Show your working.
$\qquad$
$\qquad$
$\qquad$

## Question 9 (8 marks)

Refer to the circuit diagram shown in Figure 8 below. Note that $V_{R 5}$ is $10 \mathrm{~V}_{\mathrm{DC}}$.


Figure 8
a. Find the resistance of $\mathrm{R}_{5}$. Show your working.
$\qquad$
$\qquad$
$\qquad$
b. Find the resistance of $\mathrm{R}_{4}$. Show your working.
$\qquad$
$\qquad$
$\qquad$
c. Find the total resistance of the circuit $\left(\mathrm{R}_{\text {total }}\right)$. Show your working.
d. Draw the voltmeter where it should be in the circuit in Figure 8 to measure $\mathrm{V}_{\mathrm{R} 2}$. Indicate the meter polarity.

1 mark
e. Draw the ammeter where it should be in the circuit in Figure 8 to measure $\mathrm{I}_{\mathrm{S}}$. Indicate the meter polarity.

Question 10 (9 marks)
Michael has recently purchased a small yacht. His intention is to wire a 12 V system with a solar panel and a 150 Ah capacity Absorbent Glass Mat (AGM) battery.
A block diagram of the system is shown in Figure 9.


Figure 9
a. Table 3 below lists the average daily usage and current for each device.
i. Complete Table 3 by listing the daily ampere hour requirement for each device and the total daily ampere hour requirement.

Table 3

| Device | Average daily usage <br> (hours) | Current drawn <br> by device | Daily ampere <br> hour (Ah) <br> requirement |
| :--- | :---: | :---: | :---: |
| computer tablet | 3 | 1 A |  |
| lighting system | 4 | 400 mA |  |
| $12 \mathrm{~V}_{\text {DC }}$ refrigerator | 8 | 3.5 A |  |
| VHF radio | 6 | 300 mA |  |
| depth sounder | 4 | 1.5 A |  |
| stereo system | 8 | 1 A |  |
|  | Total daily ampere hours |  |  |

ii. Michael wants to go sailing for up to five days without having to recharge the battery using an external power source (mains power).

Calculate the total ampere hour usage for five days.
1 mark

Total ampere hour usage for five days 1 Ah A
b. The $12 \mathrm{~V}_{\mathrm{DC}} 150$ Ah AGM battery can be discharged down to $50 \%$ of its capacity without causing it any internal damage. A suitable solar panel is required to supply the current needed.

In the table below, record the five-day ampere hours to be supplied by the solar panel.

1 mark

| Total ampere hour usage for five days <br> (from part a.ii.) | Ah |
| :--- | :---: |
| Battery ampere hour capacity at 50\% | Ah |
| Five-day ampere hour supply by solar panel | Ah |

c. If the solar panel operates for an average of six hours per day (full sunlight), how many amps per hour does the panel need to provide? Show your working.

Current to be provided by the solar panel per hour during full sunlight

A
d. i. Calculate the minimum power required from the solar panel.
ii. The power ratings for three solar panels are given below.

Circle the lowest-power-rated panel that will achieve the task.
1 mark
$12 \mathrm{~V}_{\mathrm{DC}}, 60 \mathrm{~W}$
$12 \mathrm{~V}_{\mathrm{DC}}, 80 \mathrm{~W}$
$12 \mathrm{~V}_{\mathrm{DC}}, 100 \mathrm{~W}$

## VCE VET INTEGRATED TECHNOLOGIES

## Written examination

## FORMULA SHEET

## Instructions

Please remove from the centre of this book during reading time.
This formula sheet is provided for your reference.

## VCE VET Integrated Technologies formulas

| $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$ | $\mathrm{f}=\frac{1}{\mathrm{~T}}$ |
| :---: | :---: |
| $\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}$ | $\tau=\mathrm{C} \times \mathrm{R}$ |
| $\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$ | $\mathrm{A}=\frac{\pi d^{2}}{4}$ |
| $\mathrm{R}=\frac{\rho l}{A}$ | $\mathrm{C}=\frac{\varepsilon \mathrm{A}}{d}$ |
| $\mathrm{V}=\mathrm{I} \times \mathrm{R}$ | $\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ |
| $\mathrm{P}=\mathrm{V} \times \mathrm{I}$ | $\frac{1}{\mathrm{C}_{\mathrm{T}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}$ |
| $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{S}}\left(\frac{\mathrm{R}_{\mathrm{X}}}{\mathrm{R}_{\mathrm{T}}}\right)$ | $\mathrm{Q}=\mathrm{V} \times \mathrm{C}$ |
| $\mathrm{V}_{\mathrm{PK}}=\sqrt{2} \times \mathrm{V}_{\mathrm{RMS}}$ | $\mathrm{W}=\frac{1}{2} \mathrm{CV}^{2}$ |
| $\frac{V_{\text {primary }}}{V_{\text {secondary }}}=\frac{N_{\text {primary }}}{N_{\text {secondary }}}=\frac{I_{\text {secondary }}}{I_{\text {primary }}}$ | $\mathrm{W}=\mathrm{Pt}$ |
| $\mathrm{V}_{\mathrm{STEP}}=\frac{\mathrm{V}_{\max }}{2^{\mathrm{n}}-1}$ | efficiency $\%=\frac{\text { output }}{\text { input }} \times 100$ |
| $\text { turns ratio }=\frac{\mathrm{N} 1}{\mathrm{~N} 2}$ | 1 ampere hour $(\mathrm{Ah})=1 \mathrm{~A}$ of amount drawn for one hour |

## Resistor code


value is in ohms ( $\Omega$ )

Capacitor code

value is in picofarads ( pF )

## Resistor colour codes



| Colour | Value | Multiplier | Tolerance |
| :--- | :---: | :---: | :---: |
| black | 0 | $10^{0}$ |  |
| brown | 1 | $10^{1}$ | $1 \%$ |
| red | 2 | $10^{2}$ | $2 \%$ |
| orange | 3 | $10^{3}$ |  |
| yellow | 4 | $10^{4}$ |  |
| green | 5 | $10^{5}$ | $0.5 \%$ |
| blue | 7 | $10^{6}$ | $0.25 \%$ |
| violet | 9 | $10^{7}$ | $0.1 \%$ |
| grey | $10^{8}$ | $0.05 \%$ |  |
| white |  | $10^{9}$ |  |
| gold | $10^{-1}$ | $5 \%$ |  |
| silver | $10^{-2}$ | $10 \%$ |  |

