VCE VET INTEGRATED TECHNOLOGIES

Written examination

FORMULA SHEET

Instructions

Please remove from the centre of this book during reading time. This formula sheet is provided for your reference.

$R_{\rm T} = R_1 + R_2 + R_3$	$f = \frac{1}{T}$
$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm I}} + \frac{1}{R_{\rm 2}} + \frac{1}{R_{\rm 3}}$	$\tau = C \times R$
$R_{\rm T} = \frac{R_1 R_2}{R_1 + R_2}$	$A = \frac{\pi d^2}{4}$
$R = \frac{\rho l}{A}$	$C = \frac{\varepsilon A}{d}$
$V = I \times R$	$C_{\rm T} = C_1 + C_2 + C_3$
$P = V \times I$	$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$
$V_{\rm X} = V_{\rm S} \left(\frac{R_{\rm X}}{R_{\rm T}} \right)$	$Q = V \times C$
$V_{\rm max} = V_{\rm peak}$	$W = \frac{1}{2}CV^2$
$V_{\text{step}} = \frac{V_{\text{max}}}{2^n - 1}$	W = P t
turns ratio = $\frac{N_1}{N_2}$	1 ampere hour (Ah) = 1 A of amount drawn for one hour
$v = V_{\max} \sin \theta$	$i = I_{\max} \sin \theta$
$V_{\rm av} = 0.637 \times V_{\rm max}$	$V_{\rm RMS} = 0.707 \times V_{\rm max}$ $V_{\rm RMS} = \frac{V_{\rm max}}{\sqrt{2}}$
$f = \frac{1}{t}$	$L_{\rm T} = L_1 + L_2 + L_3$
$\frac{1}{L_{\rm T}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$	$f_0 = \frac{1}{2\pi\sqrt{LC}}$ Hz (resonant freq)

VCE VET Integrated Technologies formulas

transformer ratios
$$\frac{V_{\rm S}}{V_{\rm P}} = \frac{N_{\rm S}}{N_{\rm P}} = \frac{I_{\rm P}}{I_{\rm S}}$$
 $\lambda = \frac{c}{f}$ m
where λ is in metres, f is in Hertz and c is the
speed of light $(3 \times 10^8 \text{ ms}^{-1})$ $\eta = \frac{\text{pin} - \text{losses}}{\text{pin}} \times 100 \ (\eta = \text{efficiency in \%})$ $\eta = \frac{\text{power out} \times 100}{\text{power in}}\%$ $\tau = \frac{L}{R}$

Resistor codes

ASCII code chart (in hexadecimal)

		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Most significant nybble	0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	ΗT	LF	VT	FF	CR	SO	SI
	1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
	2	SP	!	"	#	\$	%	&	,	()	*	+	,	-	•	/
	3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
	4	@	А	В	С	D	Е	F	G	Н	Ι	J	К	L	М	Ν	0
	5	Р	Q	R	S	Т	U	V	W	Х	Y	Z	[\]	^	_
	6	`	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0
	7	р	q	r	s	t	u	v	w	x	у	z	{		}	~	DEL

Least significant nybble

Capacitor codes

Resistor colour codes

in ohms ((Ω)
-----------	-----

Colour	Value	Multiplier	Tolerance		
black	0	100			
brown	1	10 ¹	1%		
red	2	2%			
orange	3	10 ³			
yellow	4	104			
green	5	10 ⁵	0.5%		
blue	6	106	0.25%		
violet	7	107	0.1%		
grey	8	10 ⁸	0.05%		
white	9	10 ⁹			
gold		10 ⁻¹	5%		
silver		10 ⁻²	10%		