VCE VET INTEGRATED TECHNOLOGIES

Written examination

FORMULA SHEET

Instructions

Please remove from the centre of this book during reading time.
This formula sheet is provided for your reference.

VCE VET Integrated Technologies formulas

$R_{\mathrm{T}}=R_{1}+R_{2}+R_{3}$	$f=\frac{1}{T}$
$\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$	$\tau=C \times R$
$R_{\mathrm{T}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$	$A=\frac{\pi d^{2}}{4}$
$R=\frac{\rho l}{A}$	$C=\frac{\varepsilon A}{d}$
$V=I \times R$	$C_{\mathrm{T}}=C_{1}+C_{2}+C_{3}$
$P=V \times I$	$\frac{1}{C_{\mathrm{T}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$
$V_{\mathrm{X}}=V_{\mathrm{S}}\left(\frac{R_{\mathrm{X}}}{R_{\mathrm{T}}}\right)$	$Q=V \times C$
$V_{\text {max }}=V_{\text {peak }}$	$W=\frac{1}{2} C V^{2}$
$V_{\text {step }}=\frac{V_{\text {max }}}{2^{n}-1}$	$W=P t$
$\text { turns ratio }=\frac{N_{1}}{N_{2}}$	$\begin{aligned} 1 \text { ampere hour }(\mathrm{Ah})= & 1 \mathrm{~A} \text { of amount drawn } \\ & \text { for one hour } \end{aligned}$
$v=V_{\text {max }} \sin \theta$	$i=I_{\text {max }} \sin \theta$
$V_{\text {av }}=0.637 \times V_{\text {max }}$	$V_{\mathrm{RMS}}=0.707 \times V_{\max } \quad V_{\mathrm{RMS}}=\frac{V_{\text {max }}}{\sqrt{2}}$
$f=\frac{1}{t}$	$L_{\mathrm{T}}=L_{1}+L_{2}+L_{3}$
$\frac{1}{L_{\mathrm{T}}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}$	$f_{0}=\frac{1}{2 \pi \sqrt{L C}} \mathrm{~Hz}(\text { resonant freq) }$

transformer ratios $\frac{V_{\mathrm{S}}}{V_{\mathrm{P}}}=\frac{N_{\mathrm{S}}}{N_{\mathrm{P}}}=\frac{I_{\mathrm{P}}}{I_{\mathrm{S}}}$	$\lambda=\frac{c}{f} \mathrm{~m}$ where λ is in metres, f is in Hertz and c is the speed of light $\left(3 \times 10^{8} \mathrm{~ms}^{-1}\right)$
$\eta=\frac{\text { pin }- \text { losses }}{\text { pin }} \times 100(\eta=$ efficiency in \%)	$\eta=\frac{\text { power out } \times 100}{\text { power in } \%}$
$\tau=\frac{L}{R}$	

Resistor codes

Capacitor codes

ASCII code chart (in hexadecimal)

Least significant nybble

		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Most significant nybble	0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
	1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
	2	SP	!	"	\#	\$	\%	\&	'	()	*	+	,	-	.	1
	3	0	1	2	3	4	5	6	7	8	9	:	;	$<$	$=$	>	?
	4	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
	5	P	Q	R	S	T	U	V	W	X	Y	Z	[1]	\wedge	-
	6		a	b	c	d	e	f	g	h	i	j	k	1	m	n	o
	7	p	q	r	S	t	u	v	w	x	y	Z	\{	\|	\}	\sim	DEL

Resistor colour codes

Colour	Value	Multiplier	Tolerance
black	0	10^{0}	
brown	1	10^{1}	1%
red	2	10^{2}	2%
orange	3	10^{3}	
yellow	4	10^{4}	
green	5	10^{5}	0.5%
blue	7	10^{6}	0.25%
violet	8	10^{7}	0.1%
grey	10^{8}	0.05%	
white		10^{9}	
gold	10^{-1}	5%	
silver	10^{-2}	10%	

