[image: image1.png]4N Victorian Curriculum

Foundation-10

[image: image2.png]vaumn CURRICULUM
AND ASSESSMENT AUTHORITY

Digital Coding (Technologies) – Creating Digital Solutions (F-6)
Slide 1: Introduction
Hello, my name is Megan van der Velden and I am a VCAA Specialist Teacher in the area of Digital Coding. This video resource provides information about the Digital Technologies Strand – Creating Digital Solutions – from Foundation to Level 6.

In this video you will be provided with an overview of the Creating Digital Solutions Strand along with examples of how student learning progresses as students move through the strand.

Slide 2: Scope and Sequence
The Creating Digital Solutions strand is set out in the Digital Technologies Scope and Sequence document. The Scope and Sequence document sets out the Content Descriptions – what is required to be taught, and the Achievement Standards, what is assessed and reported against.
Slide 3: Strands
The Creating Digital Solutions strand is the third strand of the Digital Technologies Curriculum. This strand introduces students to the problem solving methodology of Analyse, Design, Develop and Evaluate. We will unpack these terms in more detail as we progress through this video.
Slide 4: Key Concepts and Ways of Thinking
Underpinning this curriculum area but particularly embedded in the Creating Digital Solutions Strand are the Key Concepts and the three ways of thinking.

Slide 5: Key Concepts

The three concepts are:

· Abstraction

· Data Collection

· Specification, algorithms and development

· Digital Systems, and

· Interactions and Impacts

Slide 6: Computational thinking
Computational thinking builds skills in organising data logically, breaking down (or decomposing) problems, designing and using algorithms, and looking for patterns and creating models.

Slide 7: Design thinking

Design thinking develops strategies for understanding the design opportunities for solving the problem – using visualisations to develop the solution and analysing and evaluating the solution that has been created.

Slide 8: Systems thinking

Systems’ thinking brings it all together through the consideration of the parts and components (hardware and software) that are needed, consideration of the impacts and interrelationships and how the whole system will function. Students develop an understanding of systems and work through a process of trial and error as they develop their solutions.

Slide 9: Creating Digital Solutions strand

We will now take a look at the Creating Digital Solutions Strand in little more detail.

In this section I will unpack each banded level from Foundation to level 6 and provide examples of what a digital solution might look like at each level. In particular, I am going to show how the process of Analyse, Design, Develop and Evaluate work together within this strand.

Slide 10: Creating Digital Solutions
Creating Digital Solutions requires skills in using digital systems – understanding what systems are needed and how they connect.
Computational, design and systems thinking – Designing a digital solution and interacting safely by using appropriate technical and social protocols – what needs to happen around data security – what are the social or environmental impacts?

Slide 11: Problem-solving methodology (F-6)

Although this is the strand that programming (or coding) occurs in, it is important to remember that this strand is primarily about the processes required to create a digital solution. As mentioned earlier, this is done by using the 4 processes of:
· Analysing – What is the problem that needs to be solved?

· Designing – The user interface and algorithms

· Developing – the solution development

· Evaluating – Has the solution solved the problem?

Slide 12: Algorithmic development

Let’s take a brief look at the algorithmic development that happens throughout this strand.
Algorithmic development starts in the Foundation to level 2 area, but is very linear – showing only one pathway. Students in levels 3-4 start to include branching (decision making) in response to user input, as part of their algorithms.
In Levels 5 and 6 students use iteration (or looping) in response to patterns that they see in their algorithms. The addition of iteration at this level helps to streamline their programming and makes it more efficient. As you can see, the development continues through levels 7-10.
Slide 13: Creating Digital Solutions (F-2)

At the Foundation to level 2 level, students need to follow, describe and represent a sequence of steps and decisions (algorithms) needed to solve simple problems.

There are many ways that students could do this and it doesn’t always have to involve digital or robotic devices. Students could create algorithms for the sequence of steps required to borrow a book from the school library, how to brush their teeth, or what their morning routine in class is.
Other examples might be following a recipe or the rules for playing a game. They could program a partner to move from a specific start spot to a specific end spot within their classroom. Even though the solutions to these examples do not use digital devices, they are still valid ways of teaching and assessing student learning at this level.

Slide 14: Foundation to Level 2

We are now going to take a look at a problem that is suitable for students at this level. This problem has been designed to incorporate the use of a Bee-Bot, however could just as easily be done by students without the use of any technology.
The problem that needs to be solved is for students to use arrow cards to show how a Bee-Bot could be programmed to move in the shape of a square. If we analyse the problem we see that the Bee-bot needs to be programmed to perform a particular task – to make the shape of a square. Students need to show the steps using cards.
Students will also need to know the attributes of a square and the directional instructions such as forwards, backwards, left turn and right turn so that they can complete the activity.

Slide 15: Developing

Prior to programming the Bee-Bot, it might be a good idea to have your students program a partner either just with the words or by using the arrow cards on the floor.

Once they are ready to program the Bee-Bot, a solution might look like the one shown here. However, this solution is not very durable – when students need to pack up, their solution will be gone.

Slide 16: Developing, representing and evaluating

This is where representing their algorithms come in. Depending on the skills of your students, you might get them to draw the arrow instructions into a table, or you might give them a sheet with direction arrows on it and ask them to cut and paste their solution into their books. Either way, your student now has a permanent representation of their created solution.
Once the solution has been created, the students need to test it to see if it works. So let’s give it a try – does our solution solve the problem? Yes – following the algorithm that has been created, and assuming they have transferred their program correctly into their Bee-Bot, the Bee-Bot will follow the shape of a square.

As you can see, a solution such at this would meet the Achievement Standard Extract at Level 2. This means that regardless of the year level of the student, we would assess that student as having reached the Achievement Standard at Level 2 for this particular part of the Level 2 Achievement Standards.

Slide 17: Creating Digital Solutions (3-4)

At the 3 and 4 level more complexity is added. Students need to design algorithms that include branching (or decision making) and that responds to information input by a user. They also are required to use a visual programming language to develop a coded solution and need to be able to explain how their solution met a specific need.

Slide 18: Visual programming – Glossary definition

Before we go too much further, I would like to have a quick word about visual programming languages. When the curriculum mentions visual programming languages, it means using the type of programming generally referred to as block based. That is, students drag and drop a block of code into a programming environment. The blocks join together to build the program.

Visual programming languages such as Scratch, were specifically designed to allow younger students to begin to develop coding know-how without the syntax difficulties that are part of general purpose (or language based) programming languages. Visualisations within the context of the Digital Technologies Curriculum refer to using software to develop flowcharts or other methods of visualising student thinking.

Slide 19: Levels 3 and 4

To assist in showing the progression of skills, I am going to stay with the idea of drawing a square – but the problem will change slightly at each level.

Here is our problem at Level 3 and 4. Students are to create an activity to assist Year 2 students to learn more about 2D shapes.

Slide 20: Analyse

So let’s analyse the problem

What do the students need to do?

They need the sprite (the character that moves around in Scratch is called a sprite) to draw a 2D shape on the stage in response to user input regarding the number of sides

The students will need to know the attributes of 2D shapes, the names of the shapes and they need to understand what could reasonably be expected of a Year 2 student with respect to literacy skills and the ability to operate a program

Slide 21: Design and develop

In the Design stage, students need to design an algorithm (the written steps) in English – The algorithm might have more or less detail than the example here, however you can see that it details the steps required to have the Sprite draw a square on the stage. That is:
When the green flag is clicked

The pen will be down

The program will ask the user to input the number of sides

And if the input is 4 then

Move 150 steps

Turn 90 degrees

Wait

Move 150 steps

Turn 90 degrees

Wait

Move 150 steps

Turn 90 degrees

Wait

Move 150 steps

Turn 90 degrees

and then say Great! You have made a square – choose another number
As you can see, these instructions are only for a square shape, and the students would need to be able to design a solution that provides for a range of 2D shapes.

After they have designed their algorithm – they can use a visual programming language – we will stay with Scratch– to develop their coded solution. The solution or at least the beginning of their solution might look something like this. We have user input – the user needs to input the number – and we have branching which is done through the use of the IF…THEN control structure.

Slide 22: Evaluate
So now we can evaluate the solution – does the solution solve the problem? If the input is 4 – then a square will be drawn and displayed on the stage area. The user is also encouraged to keep playing by entering another number. A solution such as this would satisfy the Achievement Standard Extract requirements of defining simple problems, designing and developing digital solutions using algorithms involving decision-making and user input. With a bit of comparison between a similar existing information system and their developed solution, they would also meet the Achievement Standard of explaining how their developed solution and existing information systems meet their purposes. Students meeting the Achievement Standards at this level are considered to be at level 4, regardless of the year level of schooling they are in.

Slide 23: Creating Digital Solutions (5-6)

At levels 5 and 6, students continue with user input and branching, and they add iteration (or looping) into their algorithm designs. They consider the functional requirements – specific things that the solution must have and they consider other solutions as a basis for assisting with their solution design.
Students also begin to think more about the whole user interface – how a user will interact with a solution – will they input information via a touchscreen perhaps, or a keyboard – is it possible to have voice activation? How do these ideas make it easier or harder for someone to use their created solution?
Students at this stage still write their algorithms in English as for the previous level, but they also begin to show their algorithm as a diagram. In contrast to our previous solution whereby the steps to draw the square were coded in full for each side of the square – students at this level begin to look for patterns that can be written using iteration or loops. Using iteration within their programs assists in keeping the program more manageable and more efficient. They also continue to use a visual programming language to develop their solutions.

Slide 24 & 25: Levels 5 and 6

As with the other levels, students meeting Achievements at this level would be considered to be at Level 6 regardless of their year of schooling.

So here’s a potential problem at levels 5 and 6.
The year 2 students have been learning about 2D shapes. You are to create a program that will test their knowledge of 2D shapes.

Your program needs to respond to user input and let the user know if they are right or wrong. If the student has answered correctly, the shape should be drawn on the stage.

Your design and solution should show that you have considered how the user will interact with the finished product and the suitability of your solution for the end user.
Remember, you are designing and developing a solution for a Year 2 student…

Slide 26: Analyse

So let’s analyse our problem. The functional requirements are that the game needs to ask a question, have a response input by a user, tell the user if their answer is correct or incorrect, draw the shape and encourage the user to keep playing. We also need to consider the user interface – how we can ensure that the game is suitable for use by a year 2 student, and the game environment, how it will operate. We are going to have a look at our previous solution from levels 3 and 4 to help us create a solution for this problem.

Slide 27 – 31: Develop an algorithm

First, we will need to develop our algorithm. Here are the steps that we would need to use to develop our coded solution.
Looking at the previously designed solution against the possible Level 5-6 solution, you can notice that the step-by-step instructions to draw a square have been replaced by a repeat control function. The use of iteration to do this is a good start to the development of the solution.

This example shows that the question has been altered to ask “How many sides does a square have?” – This solution shows user input, branching and iteration.

When the program is run, the sequence would look something like what is shown in the screenshots. If we go back to our design brief problem, we need to be able to give feedback if the answer is incorrect though – that’s not happening in this solution and what about interest for a user – have we got it right yet?

Looking at this example, adding on to our previous solution, we now have some sound effects that may be appealing to a Year 2 student and we have also incorporated feedback for an incorrect answer. In order to do this, we have changed the control structure from an IF…THEN statement to an IF…THEN…ELSE statement. Now the sprite will let a user know if the answer is correct or incorrect and prompt them to have another try.
What about user interface – students are required to enter data through the keyboard and read the responses – Let’s assume that our Year 2 students are capable of using a keyboard to enter information, what about if they aren’t very strong readers – is there something that could be done to help here? Perhaps the questions and answers could be recorded and added to the program.

Slide 32 & 33: Evaluating Levels 5 and 6

The solution proposed in this video would solve the problem – it has all the requirements of branching, iteration and user input – there have been considerations about user interface and the aesthetics of the program developed – the functional requirements have been met and there could be some discussion about sustainability – if a player has played once, would they play again – is there a capability to dim the program or sleep the program after it hasn’t been used for a certain amount of time.

Students who have been able to meet the Achievement Standard Extract at level 6, would be considered to be at Level 6 for this particular part of the Creating Digital Solutions strand – again regardless of their school year level.

Slide 33: Achievement Standards

In conclusion, the Creating Digital Solutions strand is much more than learning to code! The strand requires students to develop and use computation thinking, design thinking and systems thinking skills as they work through the process of analyse, design, develop and evaluate. The strand also has a number of key concepts that are required to be explicitly embedded in the learning activities you create for your students.

Slide 34: Problem-solving methodology

Curriculum information is available from the VCAA Curriculum F-10 website
http://victoriancurriculum.vcaa.vic.edu.au/
Further video resources are available from the VCAA website
https://www.vcaa.vic.edu.au/Pages/foundation10/viccurriculum/digitech/intro.aspx

Links to both of these sites are available in the transcript. For information regarding the Creating Digital Solutions Strand at levels 7-10, please refer to the other video resources available.

Thanks for watching the video

©VCAA

